大模型下交互式数据挖掘的探索与发现

在这个数据驱动的时代,数据挖掘已成为解锁信息宝库的关键。过去,我们依赖传统的拖拉拽方式来建模,这种方式在早期的数据探索中起到了作用,但随着数据量的激增和需求的多样化,它的局限性逐渐显露。

>>>> 首先,操作复杂性

传统方法通常要求用户具备深厚的技术背景,包括对各种工具和编程语言的了解、数据挖掘各个环节的掌握、各个节点参数的设置等。这不仅限制了非技术人员的参与,也使得数据挖掘成为一个时间消耗巨大的任务。

>>>> 其次,灵活性不足

在处理多变的数据类型和复杂的分析需求时,传统方法往往受限于挖掘平台的功能,如果功能不具备或功能不足以满足需求,则需要通过纯代码的方式进行编译。另外,用户需要不断调整和优化数据,以达到理想的模型效果,这一过程既繁琐又耗时。

>>>> 最后,效率低下

从数据准备到模型构建,再到结果解释,整个过程充满了重复和等待。这不仅影响了数据挖掘的效率,也限制了其在快速变化的商业环境中的应用。

而今,随着人工智能技术的飞速发展,一种新的解决方案——用大模型进行数据挖掘,正悄然崛起。类似ChartGPT的大模型,已经日渐成熟,不仅仅是工具的升级换代,它代表着一种全新的思维方式。在大模型的世界里,复杂的数据处理变得触手可及。通过简单的语言指令,我们可以轻松建立和调整数据模型,这不仅使操作变得简便,更重要的是,它打开了一扇通往更高效、更灵活数据处理世界的大门。

本文中,我们将一起探索ChartGPT4.0如何优雅地解决传统方法的痛点,带领我们进入数据挖掘的新纪元。从直观的操作界面到智能化的数据分析,我们将深入了解ChartGPT4.0如何在实际应用中展现其独特的魅力,开启交互式数据挖掘的新篇章。

Step 1 数据探索

数据概览  数值型变量描述性统计

场景:

  • 数据读取:直接上传数据,不对数据内容、格式和结构做任何的描述,要求读取数据

  • 数据探索:用一句话需求,要求平台对数据进行探索

  • 数据分布:要求平台画图展示某个指标的数据分布

目标:

  • 探索平台的自动化能力

  • 探索平台对“一句话需求”的理解和执行能力

  • 探索平台的数据可视化能力

探索与发现:

  • 自动化:上传数据后,平台根据数据格式自动读取和解析数据,无需任何指令、参数和说明

  • 一句话需求:“请对这份数据进行数据探索”。平台可以精准理解用户的需求,并且根据自身的知识储备,拆解成6类数据探索操作,这六类数据探索操作十分专业

  • 专业术语:非数值型数据。平台可以精准理解专业术语,并根据要求执行非数值型数据发现

  • 图表能力:字段分布。平台可以精准理解图表需求,并精准的将图表输出。

Step 2 数据预处理

数据清洗(处理缺失值和重复值)  删除字段  WOE编码

场景:

  • 处理缺失值:要求平台识别有缺失的字段,并根据平台的自身知识自动处理

  • 处理重复值:要求平台识别数据集中的重复行,并根据平台的自身知识自动处理

  • 布离散型变量WOE编码:要求平台自行识别离散型变量,并进行WOE编码

目标:

  • 探索平台的专业数据处理能力

探索与发现:

  • 问题自愈能力:建模过程中出现了运行错误,平台会根据错误提示进行问题自愈处理,无需人工干预,十分智能。

Step 3 特征工程

特征筛选

场景:

  • 特征筛选:要求平台根据指定的、较为复杂的(需训练模型)的方式进行特征筛选

  • 特征重要性可视化:要求平台识根据特征重要性,可视化TOP n 重要特征

目标:

  • 探索平台的复杂指令识别与处理能力

探索与发现:

  • 复杂的指令:特征工程环节,我们对平台发布了复杂的作业指令,平台可以准确拆解指令并精准执行,期间遇到运行错误,自愈能力表现优秀。

Step 4 模型训练

数据抽样  模型训练  模型测试

场景:

  • 数据抽样:要求平台根据要求进行数据抽样

  • 模型训练:要求平台根据指定的算法进行模型训练

目标:

  • 探索平台训练模型的专业能力

探索与发现:

  • 专业性:在训练模型的过程中,平台自动设置最大迭代次数,并在运行后自动识别迭代次数达到最大模型是否收敛,并告知用户,既专业又贴心。

我们已经详细探讨了如何利用先进的大模型技术,如ChartGPT4.0,来极大地提升数据挖掘的效率和深度,见证了这一平台自动化处理数据的能力、对于一般性和专业性指令的高度理解、图表生成的精确性,以及面对错误时的自我修复能力。通过对这些技术进展的剖析,可以预见一个越来越自动化、智能化的未来,在这个未来中,数据的价值将以前所未有的速度被挖掘和实现。

正如本文所展示的,这些进步不仅优化了数据科学家的工作流程,也为业务决策者提供了强有力的支持。交互式数据挖掘使得非技术人员也能够进行复杂的数据分析与挖掘,从而降低了数据科学的门槛。同时,随着平台自愈能力的增强,连续的运营成为可能,进一步保证了数据分析与挖掘任务的稳定性和可靠性。

交互式数据挖掘时代,已经悄然来临。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/207287.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IPtables防火墙详解

一、IPtables介绍 iptables是unix/linux自带的一款开放源代码的完全自由的基于包过滤(对OSI模型的四层或者是四层以下进行过滤)的防火墙工具,它的功能十分强大,使用非常灵活,可以对流入和流出服务器的数据包进行很精细的控制。主要针对网络访…

微软发布了Orca 2,一对小型语言模型,它们的性能超越了体积更大的同类产品

尽管全球目睹了OpenAI的权力斗争和大规模辞职,但作为AI领域的长期支持者,微软并没有放慢自己的人工智能努力。今天,由萨提亚纳德拉领导的公司研究部门发布了Orca 2,这是一对小型语言模型,它们在零样本设置下对复杂推理…

[Docker]十一.Docker Swarm集群raft算法,Docker Swarm Web管理工具

一.Docker Swarm集群raft算法讲解 Raft :一致性算法,在保证大多数管理节点存活的情况下,集群才能使用, 所以就要求如果集群的话, manager 节点必须 >3 台 ,如果是两个台,其中一台宕机&#…

分享几种 Java8 中通过 Stream 对列表进行去重的方法

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 1. Stream 的 distinct…

pgz easyexcel如何给excel文件添加自定义属性

免费API方式 直接上传URL,自定义修改Excel 视频演示【内含接口地址】 https://www.ixigua.com/7304510132812153385 前情提示 | 功能说明 多选仅支持微软office、office365系列Excel。因为WPS宏功能需要企业版且付费生成xlsx、xlsm等文件,office和WPS均可以打开,均可以单…

数据结构---堆

1.堆的概念及结构 堆的性质&#xff1a; 堆中某个节点的值总是不大于或不小于其父节点的值堆总是一棵完全二叉树 2.举例说明 堆一般是把数组数据看做是一棵完全二叉树 小堆要求&#xff1a;任意一个父亲<孩子大堆要求&#xff1a;任意一个父亲>孩子 比如&#xff1…

【超详细】vue项目:Tinymce富文本使用教程以及踩坑总结+功能扩展

【【超详细】vue项目&#xff1a;Tinymce富文本使用教程以及踩坑总结功能扩展 引言&#xff1a;一、 开始二、快速开始1、安装Tinymce 三、封装成Vue组件1、文件结构2、index.vue3、dynamicLoadScript.js4、plugin.js5、toolbar.js 四、使用Tinymce组件五、业务逻辑实现1、添加…

【UE5】五大基类及其使用

UObject UObject表示对象&#xff0c;准确来说&#xff0c;虚幻引擎中的对象基础类为UObject UObject提供了以下功能&#xff1a; 垃圾收集&#xff08;Garbage collection&#xff09;引用自动更新&#xff08;Reference updating&#xff09;反射&#xff08;Reflection&am…

亚马逊云与生成式 AI 的融合——生成式AI的应用领域

文章目录 前言亚马逊云科技增强客户体验聊天机器人和虚拟助手亚马逊云科技 鸿翼&#xff1a;提供精准检索和问答&#xff0c;显著提升全球化售后服务体验AI 赋能的联络中心智能导购&个性化推荐智慧数字人 提升员工生成力和创造力对话式搜索亚马逊云科技 西门子&#xff1…

Vue3 Router跳转传参

最近遇到这个问题router跳转传参&#xff0c;真是要了老命了。 根据网上各位大神给出的方法&#xff0c;试了 import { useRouter } from vue-routerconst router useRouter()//1. 无法跳转 router.push(name:,params:{})//2. 可以跳转, 但需要在定义router同时定义占位符&a…

Redis7--基础篇4(Redis事务)

Redis事务是什么 可以一次执行多个命令&#xff0c;本质是一组命令的集合&#xff0c;一个事务中的所有命令都会序列化&#xff0c;按顺序串行&#xff0c;而不会被其他命令插入。 其作用就是在一个队列中&#xff0c;一次性、顺序、排他的执行一系列命令。 Redis事务 VS 数据…

使用gparted进行ubuntu虚拟机的磁盘扩容(解决gparted无法拖动分区的问题)

在学习内核编译下载linux内核源码的时候&#xff0c;由于源码非常大&#xff0c;下载的时候提示磁盘空间不足&#xff0c;我才意识到刚开始创建虚拟机的时候分配了20GB的空间现在已经快用光了。在VM的设置里可以进行扩容&#xff0c;我扩展到了30GB重启却发现空间并没有加到我使…

SQLite 和 SQLiteDatabase 的使用

实验七&#xff1a;SQLite 和 SQLiteDatabase 的使用 7.1 实验目的 本次实验的目的是让大家熟悉 Android 中对数据库进行操作的相关的接口、类等。SQLiteDatabase 这个是在 android 中数据库操作使用最频繁的一个类。通过它可以实现数据库的创建或打开、创建表、插入数据、删…

Python自动化测试——元素定位

1.selenium简介 Selenium是一个用于Web应用程序测试的工具。Selenium是直接运行在浏览器中&#xff0c;模拟用户操作web界面。支持多平台&#xff1a;windows、linux、MAC &#xff0c;支持多浏览器&#xff1a;ie、firefox、chrome等浏览器。 2. 启动浏览器 # 导入webdrive…

Apache Airflow (十四) :Airflow分布式集群搭建及测试

&#x1f3e1; 个人主页&#xff1a;IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 &#x1f6a9; 私聊博主&#xff1a;加入大数据技术讨论群聊&#xff0c;获取更多大数据资料。 &#x1f514; 博主个人B栈地址&#xff1a;豹哥教你大数据的个人空间-豹…

OBS Studio 30.0 正式发布:支持 WebRTC

导读OBS Studio 30.0 已正式发布。此版本移除了对 Ubuntu 20.04、Qt 5 和 FFmpeg 4.4 之前版本的支持。 OBS Studio 30.0 已正式发布。此版本移除了对 Ubuntu 20.04、Qt 5 和 FFmpeg 4.4 之前版本的支持。 主要变化包括&#xff1a; 支持 WebRTC&#xff08;详情查看 OBS Stu…

整体迁移SVN仓库到新的windows服务器

一、背景 公司原有的SVN服务器年代比较久远经常出现重启情况&#xff0c;需要把SVN仓库重新迁移到新的服务器上&#xff0c;在网上也搜到过拷贝Repositories文件直接在新服务器覆盖的迁移方案&#xff0c;但考虑到原有的操作系统和现有的操作系统版本不一致&#xff0c;SVN版本…

python的制图

测试数据示例&#xff1a; day report_user_cnt report_user_cnt_2 label 2023-10-01 3 3 欺诈 2023-10-02 2 4 欺诈 2023-10-03 6 5 欺诈 2023-10-04 2 1 正常 2023-10-05 4 3 正常 2023-10-06 4 4 正常 2023-10-07 2 6 正常 2023-10-08 3 7 正常 2023-10-09 3 12 正常 2023-…

代码随想录刷题题Day2

刷题的第二天&#xff0c;希望自己能够不断坚持下去&#xff0c;迎来蜕变。&#x1f600;&#x1f600;&#x1f600; 刷题语言&#xff1a;C / Python Day2 任务 977.有序数组的平方 209.长度最小的子数组 59.螺旋矩阵 II 1 有序数组的平方&#xff08;重点&#xff1a;双指针…

华为电视盒子 EC6108V9C 刷机成linux系统

场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 家里装宽带的时候会自带电视盒子&#xff0c;但是由于某些原因电视盒子没有用&#xff0c;于是就只能摆在那里吃土&#xff0c;闲来无事&#xff0c;搞一下 问题描述 提示&#xff1a;这里描述项目中遇到…