在异步任务执行的时候,我们知道其背后都有一个线程池来执行任务,但是为了控制异步任务的并发不影响到应用的正常运作,我们需要对线程池做好相关的配置,以防资源过度使用。这个时候我们就考虑将线程池进行隔离了。
那么我们为啥要隔离@Async异步任务的线程池?
-
控制资源:通过隔离异步任务的线程池,可以更好地控制系统的资源使用。不同类型的异步任务可能对系统资源的需求不同,例如某些任务可能需要更多的线程数或更大的队列容量。通过隔离线程池,可以为每种类型的任务分配适当的资源,避免资源争用和过度消耗。
-
优化性能:隔离异步任务的线程池可以帮助优化系统的性能。如果所有的异步任务共享同一个线程池,当某个任务出现阻塞或执行时间过长时,可能会影响其他任务的执行。通过隔离线程池,可以确保每个任务都有独立的线程池资源,提高系统的并发能力和响应性能。
-
业务隔离:有时候,不同的业务逻辑可能需要不同的异步任务处理方式。通过隔离线程池,可以为每个业务逻辑定义独立的线程池,以满足不同业务的需求。例如,某些任务可能需要更高的优先级或更短的超时时间,而另一些任务可能需要更大的线程池容量。通过隔离线程池,可以更好地管理和调整每个业务逻辑的异步任务执行环境。
下面看一个demo:
demo
-
创建自定义的线程池:首先,你可以创建一个自定义的线程池,用于处理
@Async
注解标记的异步任务。可以使用ThreadPoolTaskExecutor
类来创建线程池。@Configuration @EnableAsync public class AsyncConfig implements AsyncConfigurer {@Bean(name = "asyncTaskExecutor")public Executor asyncTaskExecutor() {ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();// 配置线程池属性executor.setCorePoolSize(10);executor.setMaxPoolSize(20);executor.setQueueCapacity(100);executor.setThreadNamePrefix("AsyncTask-");executor.initialize();return executor;}@Overridepublic Executor getAsyncExecutor() {return asyncTaskExecutor();} }
在上述示例中,我们创建了一个名为
asyncTaskExecutor
的线程池,并配置了核心线程数、最大线程数、队列容量等属性。 -
在异步任务方法上指定线程池:接下来,你可以在需要异步执行的方法上使用
@Async
注解,并通过value属性指定要使用的线程池。@Service public class MyService {@Async("asyncTaskExecutor")public void asyncMethod() {// 异步任务的具体逻辑} }
在上述示例中,我们使用
@Async("asyncTaskExecutor")
注解将asyncMethod()
方法标记为异步任务,并指定了使用名为asyncTaskExecutor
的线程池。
实际案例
记得在启动类中添加@EnableAsync
注解呀
我们来初始化多个线程池:
@EnableAsync
@Configuration
public class TaskPoolConfig {@Beanpublic Executor taskExecutor1() {ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();executor.setCorePoolSize(2);executor.setMaxPoolSize(2);executor.setQueueCapacity(10);executor.setKeepAliveSeconds(60);//使用线程名前缀,可以用来观察顺序executor.setThreadNamePrefix("executor-1-");executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());return executor;}@Beanpublic Executor taskExecutor2() {ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();executor.setCorePoolSize(2);executor.setMaxPoolSize(2);executor.setQueueCapacity(10);executor.setKeepAliveSeconds(60);executor.setThreadNamePrefix("executor-2-");executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());return executor;}
}
接下来创建一个异步任务,然后指定要使用线程池名字。
@Slf4j
@Component
public class AsyncTasks {public static Random random = new Random();@Async("taskExecutor1")public CompletableFuture<String> doTaskOne(String taskNo) throws Exception {log.info("开始任务:{}", taskNo);long start = System.currentTimeMillis();Thread.sleep(random.nextInt(10000));long end = System.currentTimeMillis();log.info("完成任务:{},耗时:{} 毫秒", taskNo, end - start);return CompletableFuture.completedFuture("任务完成");}@Async("taskExecutor2")public CompletableFuture<String> doTaskTwo(String taskNo) throws Exception {log.info("开始任务:{}", taskNo);long start = System.currentTimeMillis();Thread.sleep(random.nextInt(10000));long end = System.currentTimeMillis();log.info("完成任务:{},耗时:{} 毫秒", taskNo, end - start);return CompletableFuture.completedFuture("任务完成");}}
创建一个测试类:
@Slf4j
@SpringBootTest
public class ApplicationTests {@Autowiredprivate AsyncTasks asyncTasks;@Testpublic void test() throws Exception {long start = System.currentTimeMillis();// 线程池1CompletableFuture<String> task1 = asyncTasks.doTaskOne("1");CompletableFuture<String> task2 = asyncTasks.doTaskOne("2");CompletableFuture<String> task3 = asyncTasks.doTaskOne("3");// 线程池2CompletableFuture<String> task4 = asyncTasks.doTaskTwo("4");CompletableFuture<String> task5 = asyncTasks.doTaskTwo("5");CompletableFuture<String> task6 = asyncTasks.doTaskTwo("6");// 一起执行CompletableFuture.allOf(task1, task2, task3, task4, task5, task6).join();long end = System.currentTimeMillis();log.info("任务全部完成,总耗时:" + (end - start) + "毫秒");}}
在上面的单元测试中,一共启动了6个异步任务,前三个用的是线程池1,后三个用的是线程池2。
先不执行,根据设置的核心线程2和最大线程数2,我们来猜猜线程的执行顺序。
-
线程池1的三个任务,task1和task2会先获得执行线程,然后task3因为没有可分配线程进入缓冲队列
-
线程池2的三个任务,task4和task5会先获得执行线程,然后task6因为没有可分配线程进入缓冲队列
-
任务task3会在task1或task2完成之后,开始执行
-
任务task6会在task4或task5完成之后,开始执行
执行结果:
通过以上步骤,你可以实现对@Async
异步任务的线程池进行隔离。这样可以根据需要创建多个线程池,并为不同的异步任务指定不同的线程池,以实现任务之间的隔离和资源控制。通过隔离@Async
异步任务的线程池,可以实现对系统资源的控制、性能的优化和业务逻辑的隔离。这样可以提高系统的稳定性、可伸缩性和灵活性,更好地满足不同业务场景下的需求。