文字识别(OCR)专题——基于NCNN轻量级PaddleOCRv4模型C++推理

前言

PaddleOCR 提供了基于深度学习的文本检测、识别和方向检测等功能。其主要推荐的 PP-OCR 算法在国内外的企业开发者中得到广泛应用。在短短的几年时间里,PP-OCR 的累计 Star 数已经超过了32.2k,常常出现在 GitHub Trending 和 Paperswithcode 的日榜和月榜第一位,被认为是当前OCR领域最热门的仓库之一。

PaddleOCR 最初主打的 PP-OCR 系列模型在去年五月份推出了 v3 版本。最近,飞桨 AI 套件团队对 PP-OCRv3 进行了全面改进,推出了重大更新版本 PP-OCRv4。这个新版本预计带来了更先进的技术、更高的性能和更广泛的适用性,将进一步推动OCR技术在各个领域的应用。

PP-OCRv4在速度可比情况下,中文场景端到端 Hmean 指标相比于 PP-OCRv3提升4.25%,效果大幅提升。具体指标如下表所示:
在这里插入图片描述
测试环境:CPU 型号为 Intel Gold 6148,CPU 预测时使用 OpenVINO。

除了更新中文模型,本次升级也优化了英文数字模型,在自有评估集上文本识别准确率提升6%,如下表所示:
在这里插入图片描述
同时,也对已支持的80余种语言识别模型进行了升级更新,在有评估集的四种语系识别准确率平均提升5%以上,如下表所示:
在这里插入图片描述

一、模型转换

1.模型下载

从https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.7 下载要用到的模型,要下载的模型有文本检测模型、文字方向模型、文字识别模型,我这里只下下载了文本检测与文字识别的模型。
在这里插入图片描述
下载好的模型nference.pdiparams为模型参数文件,inference.pdmodel为模型结构文件,这两个文件在转换onnx的时候都要用到。

2.模型转成onnx

使用paddle2ONNX进行模型转换,git地址:https://github.com/paddlepaddle/paddle2onnx, 下载源码然后编译转换,也可以使用在线转换的方法,如果嫌麻烦,最好使用在线的转换方法,在线地址:https://www.paddlepaddle.org.cn/paddle/visualdl/modelconverter/x2paddle
在这里插入图片描述

3. onnx转ncnn模型

这里为了之后在移动部署做准备,选择使用NCNN做最终的模型推理,NCNN封装了很高效的API接品,可以方便地在移动设备和嵌入式系统上进行神经网络的部署和推理。适用于移动设备和嵌入式设备。它被设计用于在各种硬件平台上高效地运行神经网络推断(inference)。NCNN主要特点包括:

  1. 轻量级和高效性: NCNN被设计为一个轻量级框架,具有高度优化的推断性能。它的设计目标是在移动设备和嵌入式设备上实现高效的神经网络推理。

  2. 跨平台支持: NCNN支持多种硬件平台,包括CPU、GPU、DSP等,并且可以在各种操作系统上运行,如Windows、Android、iOS、Linux等。

  3. 优化和硬件加速: NCNN对各种硬件进行了优化,并利用硬件加速特性提高了神经网络推断的性能。

  4. 丰富的模型支持: NCNN支持各种常见的深度学习模型,如AlexNet、VGG、ResNet、MobileNet等,并且兼容一些深度学习框架导出的模型,Caffe、TensorFlow、ONNX等。

可以从https://github.com/Tencent/ncnn 获取源码进行编译,也可以下载官方编译好的lib进行转换,还可以使用在线接口进行转换。在线接地址:https://convertmodel.com/。
在这里插入图片描述

转出来的模型后缀是.param和.bin文件。

二、文本检测

文本检测是旨在从图像或视频中准确地检测和定位文本的位置和边界框,OCR系统中的一个重要组成部分,它为后续的文本识别提供了定位和定界的信息。

  1. 预处理:对输入的图像进行预处理,可能包括图像增强、去噪、尺寸标准化等操作,以便更好地适应文本检测算法。

  2. 文本区域检测:使用特定的算法或模型来检测图像中可能包含文本的区域。常见的方法包括基于区域的方法(如基于区域的CNN(R-CNN)系列)、基于锚点的方法(如SSD和YOLO)、以及基于注意力机制的方法(如EAST、TextBoxes++等)。

  3. 后处理:在获取文本区域的初始预测结果后,可以进行后处理步骤来提高检测的准确性和稳定性。这可能包括非极大值抑制(NMS)来消除重叠的边界框、边框回归以精细调整边界框的位置等。

文本检测类:

#ifndef __OCR_DBNET_H__
#define __OCR_DBNET_H__#include "base_struct.h"
#include <ncnn/net.h>
#include <vector>
#include <ncnn/cpu.h>namespace NCNNOCR
{class DbNet{public:DbNet();~DbNet() {};int read_model(std::string param_path = "data/det.param",std::string bin_path = "data/det.bin", bool use_gpu = true);bool detect(cv::Mat& src, std::vector<TextBox>& results, int _target_size = 1024);private:ncnn::Net net;const float meanValues[3] = { 0.485 * 255, 0.456 * 255, 0.406 * 255 };const float normValues[3] = { 1.0 / 0.229 / 255.0, 1.0 / 0.224 / 255.0,1.0 / 0.225 / 255.0 };float boxThresh = 0.3f;float boxScoreThresh = 0.5f;float unClipRatio = 2.0f;int target_size;};
}#endif //__OCR_DBNET_H__

类实现:

#include "db_net.h"
#include "tools.h"namespace NCNNOCR
{int DbNet::read_model(std::string param_path, std::string bin_path, bool use_gpu){ncnn::set_cpu_powersave(2);ncnn::set_omp_num_threads(ncnn::get_big_cpu_count());net.opt = ncnn::Option();#if NCNN_VULKANnet.opt.use_vulkan_compute = use_gpu;
#endifnet.opt.lightmode = true;net.opt.num_threads = ncnn::get_big_cpu_count();int rp = net.load_param(param_path.c_str());int rb = net.load_model(bin_path.c_str());if (rp == 0 || rb == 0){return false;}return true;}std::vector<TextBox> inline findRsBoxes(const cv::Mat& fMapMat,const cv::Mat& norfMapMat,const float boxScoreThresh,const float unClipRatio){const float minArea = 3;std::vector<TextBox> rsBoxes;rsBoxes.clear();std::vector<std::vector<cv::Point>> contours;cv::findContours(norfMapMat, contours, cv::RETR_LIST,cv::CHAIN_APPROX_SIMPLE);for (int i = 0; i < contours.size(); ++i) {float minSideLen, perimeter;std::vector<cv::Point> minBox =getMinBoxes(contours[i], minSideLen, perimeter);if (minSideLen < minArea)continue;float score = boxScoreFast(fMapMat, contours[i]);if (score < boxScoreThresh)continue;//---use clipper start---std::vector<cv::Point> clipBox = unClip(minBox, perimeter, unClipRatio);std::vector<cv::Point> clipMinBox =getMinBoxes(clipBox, minSideLen, perimeter);//---use clipper end---if (minSideLen < minArea + 2)continue;for (int j = 0; j < clipMinBox.size(); ++j) {clipMinBox[j].x = (clipMinBox[j].x / 1.0);clipMinBox[j].x =(std::min)((std::max)(clipMinBox[j].x, 0), norfMapMat.cols);clipMinBox[j].y = (clipMinBox[j].y / 1.0);clipMinBox[j].y =(std::min)((std::max)(clipMinBox[j].y, 0), norfMapMat.rows);}rsBoxes.emplace_back(TextBox{ clipMinBox, score });}reverse(rsBoxes.begin(), rsBoxes.end());return rsBoxes;}bool DbNet::detect(cv::Mat& src, std::vector<TextBox>& results_, int _target_size){target_size = _target_size;int width = src.cols;int height = src.rows;int w = width;int h = height;float scale = 1.f;const int resizeMode = 0; // min = 0, max = 1if (resizeMode == 1) {if (w < h) {scale = (float)target_size / w;w = target_size;h = h * scale;}else {scale = (float)target_size / h;h = target_size;w = w * scale;}}else if (resizeMode == 0) {if (w > h) {scale = (float)target_size / w;w = target_size;h = h * scale;}else {scale = (float)target_size / h;w = w * scale;h = target_size;}}ncnn::Extractor extractor = net.create_extractor();ncnn::Mat out;cv::Size in_pad_size;int wpad = (w + 31) / 32 * 32 - w;int hpad = (h + 31) / 32 * 32 - h;ncnn::Mat in_pad_;ncnn::Mat input = ncnn::Mat::from_pixels_resize(src.data, ncnn::Mat::PIXEL_RGB, width, height, w, h);// pad to target_size rectanglencnn::copy_make_border(input, in_pad_, hpad / 2, hpad - hpad / 2, wpad / 2,wpad - wpad / 2, ncnn::BORDER_CONSTANT, 0.f);in_pad_.substract_mean_normalize(meanValues, normValues);in_pad_size = cv::Size(in_pad_.w, in_pad_.h);extractor.input("x", in_pad_);extractor.extract("sigmoid_0.tmp_0", out);//    ncnn::Mat flattened_out = out.reshape(out.w * out.h * out.c);//-----boxThresh-----cv::Mat fMapMat(in_pad_size.height, in_pad_size.width, CV_32FC1, (float*)out.data);cv::Mat norfMapMat;norfMapMat = fMapMat > boxThresh;cv::Mat element = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));cv::dilate(norfMapMat, norfMapMat, element, cv::Point(-1, -1), 1);std::vector<TextBox> results =findRsBoxes(fMapMat, norfMapMat, boxScoreThresh,unClipRatio);for (int i = 0; i < results.size(); i++) {for (int j = 0; j < results[i].boxPoint.size(); j++) {float x = float(results[i].boxPoint[j].x - (wpad / 2)) / scale;float y = float(results[i].boxPoint[j].y - (hpad / 2)) / scale;x = std::max(std::min(x, (float)(width - 1)), 0.f);y = std::max(std::min(y, (float)(height - 1)), 0.f);results[i].boxPoint[j].x = (int)x;results[i].boxPoint[j].y = (int)y;}if (abs(results[i].boxPoint[0].x - results[i].boxPoint[1].x) <= 3) {continue;}if (abs(results[i].boxPoint[0].y - results[i].boxPoint[3].y) <= 3) {continue;}results_.push_back(results[i]);}return true;}DbNet::DbNet(){}
}

检测结果:
在这里插入图片描述
在这里插入图片描述

三、文字识别

1. OCR

文字识别是将印刷或手写文本转换为可文本,被广泛应用于各种领域,包括数字化档案管理、自动化数据录入、图像搜索、身份验证、自动车牌识别、票据处理、手写文字识别。

类声明:

#ifndef __OCR_CRNNNET_H__
#define __OCR_CRNNNET_H__#include "base_struct.h"
#include <ncnn/net.h>
#include <opencv2/opencv.hpp>
#include <vector>
#include <ncnn/cpu.h>
#include <fstream>namespace NCNNOCR
{class CrnnNet{public:CrnnNet();~CrnnNet() {};int read_model(std::string param_path = "data/ch_recv4.ncnn.param",std::string bin_path = "data/ch_recv4.ncnn.bin",std::string key_path = "data/dict_chi_sim.txt", bool use_gpu = false);int read_keys(std::string key_path);bool detect(cv::Mat& src, TextLine& result);bool detect(std::vector<cv::Mat>& src, std::vector<TextLine>& results);private:TextLine scoreToTextLine(const std::vector<float>& outputData, int h, int w);private:ncnn::Net net;const int dstHeight = 48;const int dstWidth = 320;const float meanValues[3] = { 127.5, 127.5, 127.5 };const float normValues[3] = { 1.0 / 127.5, 1.0 / 127.5, 1.0 / 127.5 };std::vector<std::string> keys;};
}#endif //__OCR_DBNET_H__

类实现:

#include "crnn_net.h"namespace NCNNOCR
{template<class ForwardIterator>inline static size_t argmax(ForwardIterator first, ForwardIterator last){return std::distance(first, std::max_element(first, last));}int CrnnNet::read_model(std::string param_path, std::string bin_path,std::string key_path, bool use_gpu){ncnn::set_cpu_powersave(2);ncnn::set_omp_num_threads(ncnn::get_big_cpu_count());net.opt = ncnn::Option();#if NCNN_VULKANnet.opt.use_vulkan_compute = use_gpu;
#endifnet.opt.num_threads = ncnn::get_big_cpu_count();int rp = net.load_param(param_path.c_str());int rb = net.load_model(bin_path.c_str());int rk = read_keys(key_path);if (rp == 0 || rb == 0 || rk == 0){return false;}return true;}int CrnnNet::read_keys(std::string key_path){std::ifstream in(key_path.c_str());std::string line;if (in){while (getline(in, line)){// line中不包括每行的换行符keys.push_back(line);}}else{printf("The keys.txt file was not found\n");}keys.insert(keys.begin(), "#");keys.emplace_back(" ");return keys.size();};TextLine CrnnNet::scoreToTextLine(const std::vector<float>& outputData, int h, int w){int keySize = keys.size();std::string strRes;std::vector<float> scores;int lastIndex = -1;int maxIndex;float maxValue;for (int i = 0; i < h; i++){maxIndex = 0;maxValue = -1000.f;maxIndex = int(argmax(outputData.begin() + i * w, outputData.begin() + i * w + w));maxValue = float(*std::max_element(outputData.begin() + i * w, outputData.begin() + i * w + w)); // / partition;if (maxIndex > 0 && maxIndex < keySize && (!(maxIndex == lastIndex))){/* std::cout << maxIndex << std::endl;*/scores.emplace_back(maxValue);//std::cout << keys[maxIndex] << std::endl;strRes.append(keys[maxIndex]);}lastIndex = maxIndex;}return { strRes, scores };}bool CrnnNet::detect(cv::Mat& src, TextLine& result){int resized_w = 0;float ratio = src.cols / float(src.rows);resized_w = ceil(dstHeight * ratio);cv::Size tmp = cv::Size(resized_w, dstHeight);ncnn::Mat input = ncnn::Mat::from_pixels_resize(src.data, ncnn::Mat::PIXEL_BGR2RGB,src.cols, src.rows, tmp.width, tmp.height);input.substract_mean_normalize(meanValues, normValues);ncnn::Extractor extractor = net.create_extractor();extractor.input("in0", input);ncnn::Mat out;extractor.extract("out0", out);float* floatArray = (float*)out.data;std::vector<float> outputData(floatArray, floatArray + out.h * out.w);result = scoreToTextLine(outputData, out.h, out.w);return true;}bool CrnnNet::detect(std::vector<cv::Mat>& src,std::vector<TextLine>& results){int sizeLen = src.size();// results.resize(sizeLen);for (size_t i = 0; i < sizeLen; i++){TextLine textline;if (detect(src[i], textline)){results.emplace_back(textline);}else{return false;}}return true;}CrnnNet::CrnnNet(){}
}

2.在图像画中文

识别后,想要比对识别的结果,可以把文字画到当前图像,但OpenCV没有提供画中文的方法,甩以要自己写一个画中文的方法:

#include "put_text.h"void get_string_size(HDC hDC, const char* str, int* w, int* h)
{SIZE size;GetTextExtentPoint32A(hDC, str, strlen(str), &size);if (w != 0) *w = size.cx;if (h != 0) *h = size.cy;
}void put_text_ch(Mat &dst, const char* str, Point org, Scalar color, int fontSize, const char* fn, bool italic, bool underline)
{CV_Assert(dst.data != 0 && (dst.channels() == 1 || dst.channels() == 3));int x, y, r, b;if (org.x > dst.cols || org.y > dst.rows) return;x = org.x < 0 ? -org.x : 0;y = org.y < 0 ? -org.y : 0;LOGFONTA lf;lf.lfHeight = -fontSize;lf.lfWidth = 0;lf.lfEscapement = 0;lf.lfOrientation = 0;lf.lfWeight = 5;lf.lfItalic = italic;   //斜体lf.lfUnderline = underline; //下划线lf.lfStrikeOut = 0;lf.lfCharSet = DEFAULT_CHARSET;lf.lfOutPrecision = 0;lf.lfClipPrecision = 0;lf.lfQuality = PROOF_QUALITY;lf.lfPitchAndFamily = 0;strcpy_s(lf.lfFaceName, fn);HFONT hf = CreateFontIndirectA(&lf);HDC hDC = CreateCompatibleDC(0);HFONT hOldFont = (HFONT)SelectObject(hDC, hf);int strBaseW = 0, strBaseH = 0;int singleRow = 0;char buf[1 << 12];strcpy_s(buf, str);char *bufT[1 << 12];  // 这个用于分隔字符串后剩余的字符,可能会超出。//处理多行{int nnh = 0;int cw, ch;const char* ln = strtok_s(buf, "\n", bufT);while (ln != 0){get_string_size(hDC, ln, &cw, &ch);strBaseW = max(strBaseW, cw);strBaseH = max(strBaseH, ch);ln = strtok_s(0, "\n", bufT);nnh++;}singleRow = strBaseH;strBaseH *= nnh;}if (org.x + strBaseW < 0 || org.y + strBaseH < 0){SelectObject(hDC, hOldFont);DeleteObject(hf);DeleteObject(hDC);return;}r = org.x + strBaseW > dst.cols ? dst.cols - org.x - 1 : strBaseW - 1;b = org.y + strBaseH > dst.rows ? dst.rows - org.y - 1 : strBaseH - 1;org.x = org.x < 0 ? 0 : org.x;org.y = org.y < 0 ? 0 : org.y;BITMAPINFO bmp = { 0 };BITMAPINFOHEADER& bih = bmp.bmiHeader;int strDrawLineStep = strBaseW * 3 % 4 == 0 ? strBaseW * 3 : (strBaseW * 3 + 4 - ((strBaseW * 3) % 4));bih.biSize = sizeof(BITMAPINFOHEADER);bih.biWidth = strBaseW;bih.biHeight = strBaseH;bih.biPlanes = 1;bih.biBitCount = 24;bih.biCompression = BI_RGB;bih.biSizeImage = strBaseH * strDrawLineStep;bih.biClrUsed = 0;bih.biClrImportant = 0;void* pDibData = 0;HBITMAP hBmp = CreateDIBSection(hDC, &bmp, DIB_RGB_COLORS, &pDibData, 0, 0);CV_Assert(pDibData != 0);HBITMAP hOldBmp = (HBITMAP)SelectObject(hDC, hBmp);//color.val[2], color.val[1], color.val[0]SetTextColor(hDC, RGB(255, 255, 255));SetBkColor(hDC, 0);//SetStretchBltMode(hDC, COLORONCOLOR);strcpy_s(buf, str);const char* ln = strtok_s(buf, "\n", bufT);int outTextY = 0;while (ln != 0){TextOutA(hDC, 0, outTextY, ln, strlen(ln));outTextY += singleRow;ln = strtok_s(0, "\n", bufT);}uchar* dstData = (uchar*)dst.data;int dstStep = dst.step / sizeof(dstData[0]);unsigned char* pImg = (unsigned char*)dst.data + org.x * dst.channels() + org.y * dstStep;unsigned char* pStr = (unsigned char*)pDibData + x * 3;for (int tty = y; tty <= b; ++tty){unsigned char* subImg = pImg + (tty - y) * dstStep;unsigned char* subStr = pStr + (strBaseH - tty - 1) * strDrawLineStep;for (int ttx = x; ttx <= r; ++ttx){for (int n = 0; n < dst.channels(); ++n) {double vtxt = subStr[n] / 255.0;int cvv = vtxt * color.val[n] + (1 - vtxt) * subImg[n];subImg[n] = cvv > 255 ? 255 : (cvv < 0 ? 0 : cvv);}subStr += 3;subImg += dst.channels();}}SelectObject(hDC, hOldBmp);SelectObject(hDC, hOldFont);DeleteObject(hf);DeleteObject(hBmp);DeleteDC(hDC);
}

3.字符转换

识别的字符属于UTF8,在windows下,要转成ASCII才能正常显示不乱码,在C++中,可以使用标准库中的一些函数来处理字符编码的转换,但需要注意UTF-8和ASCII字符编码之间的差异。因为UTF-8是一种更广泛支持字符的编码方式,所以在进行转换时,需要确保要转换的文本仅包含ASCII字符。

#include "EncodeConversion.h"
#include <Windows.h>//utf8 转 Unicode
extern std::wstring Utf8ToUnicode(const std::string& utf8string)
{int widesize = ::MultiByteToWideChar(CP_UTF8, 0, utf8string.c_str(), -1, NULL, 0);if (widesize == ERROR_NO_UNICODE_TRANSLATION){throw std::exception("Invalid UTF-8 sequence.");}if (widesize == 0){throw std::exception("Error in conversion.");}std::vector<wchar_t> resultstring(widesize);int convresult = ::MultiByteToWideChar(CP_UTF8, 0, utf8string.c_str(), -1, &resultstring[0], widesize);if (convresult != widesize){throw std::exception("La falla!");}return std::wstring(&resultstring[0]);
}//unicode 转为 ascii
extern std::string WideByteToAcsi(std::wstring& wstrcode)
{int asciisize = ::WideCharToMultiByte(CP_OEMCP, 0, wstrcode.c_str(), -1, NULL, 0, NULL, NULL);if (asciisize == ERROR_NO_UNICODE_TRANSLATION){throw std::exception("Invalid UTF-8 sequence.");}if (asciisize == 0){throw std::exception("Error in conversion.");}std::vector<char> resultstring(asciisize);int convresult = ::WideCharToMultiByte(CP_OEMCP, 0, wstrcode.c_str(), -1, &resultstring[0], asciisize, NULL, NULL);if (convresult != asciisize){throw std::exception("La falla!");}return std::string(&resultstring[0]);
}//utf-8 转 ascii
extern std::string UTF8ToASCII(std::string& strUtf8Code)
{std::string strRet("");//先把 utf8 转为 unicodestd::wstring wstr = Utf8ToUnicode(strUtf8Code);//最后把 unicode 转为 asciistrRet = WideByteToAcsi(wstr);return strRet;
}//ascii 转 Unicode
extern std::wstring AcsiToWideByte(std::string& strascii)
{int widesize = MultiByteToWideChar(CP_ACP, 0, (char*)strascii.c_str(), -1, NULL, 0);if (widesize == ERROR_NO_UNICODE_TRANSLATION){throw std::exception("Invalid UTF-8 sequence.");}if (widesize == 0){throw std::exception("Error in conversion.");}std::vector<wchar_t> resultstring(widesize);int convresult = MultiByteToWideChar(CP_ACP, 0, (char*)strascii.c_str(), -1, &resultstring[0], widesize);if (convresult != widesize){throw std::exception("La falla!");}return std::wstring(&resultstring[0]);
}//Unicode 转 Utf8
extern std::string UnicodeToUtf8(const std::wstring& widestring)
{int utf8size = ::WideCharToMultiByte(CP_UTF8, 0, widestring.c_str(), -1, NULL, 0, NULL, NULL);if (utf8size == 0){throw std::exception("Error in conversion.");}std::vector<char> resultstring(utf8size);int convresult = ::WideCharToMultiByte(CP_UTF8, 0, widestring.c_str(), -1, &resultstring[0], utf8size, NULL, NULL);if (convresult != utf8size){throw std::exception("La falla!");}return std::string(&resultstring[0]);
}//ascii 转 Utf8
extern std::string ASCIIToUTF8(std::string& strAsciiCode)
{std::string strRet("");//先把 ascii 转为 unicodestd::wstring wstr = AcsiToWideByte(strAsciiCode);//最后把 unicode 转为 utf8strRet = UnicodeToUtf8(wstr);return strRet;
}

三、整体测试

#include <iostream>
#include "crnn_net.h"
#include "db_net.h"
#include "tools.h"
#include "put_text.h"
#include "EncodeConversion.h"int main() 
{NCNNOCR::DbNet det_net;NCNNOCR::CrnnNet rec_net;rec_net.read_model();det_net.read_model();cv::Mat img = cv::imread("235.jpg");if (img.empty()){std::cout << "empty" << std::endl;return 0;}cv::Mat drawImg = img.clone();std::vector< NCNNOCR::TextBox> boxResult;std::vector< NCNNOCR::TextLine> recResult;det_net.detect(img, boxResult,2560);recResult.resize(boxResult.size());for (size_t i = 0; i < boxResult.size(); i++) {cv::Mat partImg = NCNNOCR::getRotateCropImage(img, boxResult[i].boxPoint);rec_net.detect(partImg, recResult[i]);cv::polylines(drawImg, boxResult[i].boxPoint, true, cv::Scalar(0,0,255),4);std::string text = UTF8ToASCII(recResult.at(i).text);std::cout << text << std::endl;if (text.empty()){continue;}put_text_ch(drawImg, text.c_str(), boxResult[i].boxPoint[0], cv::Scalar(0, 0, 255), 80);}cv::namedWindow("result", 0);cv::imshow("result", drawImg);cv::waitKey();return 0;
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/207670.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2.qml 3D-View3D类学习

本章我们来学习View3D类。 View3D是用来渲染3D场景并显示在2D平面的类&#xff0c;并且该类可以放在QML2D下继承于Item子类的任何场景中&#xff0c;比如将View3D放在Rectangle中: Rectangle {width: 200 height: 200color: "red"View3D { anchors.fill: parent…

瞻芯电子荣获“汽车芯片50强”奖,展现技术水平

023年11月28日&#xff0c;瞻芯电子在北京举办的“芯向亦庄”汽车芯片大赛中脱颖而出&#xff0c;凭借其车规级碳化硅(SiC)MOSFET产品的卓越性能和创新特点&#xff0c;荣获“汽车芯片50强”奖项&#xff0c;展现了瞻芯电子在汽车芯片领域的技术水平和发展潜力。 芯向亦庄2023汽…

Inkscape 图片生成Gcode

1.到网上找一张简单的图片&#xff0c;拖入软件中 2.文档属性单位改成毫米 3.路径--->提取位图轮廓-->使用边缘检测 4.删除原图片 5.路径-->笔廓转化成路径 6.转变完了效果如下 7.文件另存为--> gcode 就大功告成啦

0Ω电阻最大过流能力及作用用途

0Ω电阻最大过流能力及作用用途 0Ω电阻过流能力0Ω电阻的作用 0Ω电阻过流能力 0Ω电阻不一定是真正的0Ω电阻&#xff0c;0Ω电阻存在一定的阻值偏差&#xff0c;主要看生产电阻厂商做哪种了。厂商都是根据电阻标准文件 EN60115-2&#xff0c; 里头0Ω电阻实际最大阻值有 10…

【Redis缓存】RedisTemplate如何获取符合要求的key,批量获取key

RedisTemplate如何获取符合要求的key,批量获取key 一、方法/命令二、数据使用 一、方法/命令 如果使用命令的形式&#xff0c;输入以下命令即可 keys *如果使用RedisTemplate&#xff0c;则方法为 redisTemplate.keys()获取所有符合条件的key。 二、数据使用 redis中缓存了…

【Linux系统化学习】揭秘 命令行参数 | 环境变量

个人主页点击直达&#xff1a;小白不是程序媛 Linux专栏&#xff1a;Linux系统化学习 代码仓库&#xff1a;Gitee 目录 命令行参数 环境变量 PATH 查看PATH $PWD 查看环境变量PWD $HOME 查看系统支持的环境变量 获取环境变量 命令行参数 在C/C编程语言中我们有一个…

高并发下缓存失效问题-缓存穿透、缓存击穿、缓存雪崩、Redis分布式锁简单实现、Redisson实现分布式锁

文章目录 缓存基本使用范式暴露的几个问题缓存失效问题---缓存穿透缓存失效问题---缓存击穿一、单机锁正确的锁粒度不正确的锁粒度无法保证查询数据库次数是唯一 二、分布式锁getCatalogJsonData()分布式锁演进---基本原理分布式锁(加锁)演进一&#xff1a;删锁失败导致死锁分布…

负电源电压转换-TP7660H

负电源电压转换-TP7660H 简介引脚说明典型应用电路倍压与反压的应用电路 简介 TP7660H 是一款 DC/DC 电荷泵电压反转器专用集成电路。芯片能将输入范围为 2.5V&#xff5e;11V 的电压转换成相应的-2.5V&#xff5e;-11V 的输出&#xff0c;电压转换精度可达99.9%&#xff0c;电…

Docker的常用基本命令(基础命令)

文章目录 1. Docker简介2. Docker环境安装Linux安装 3. 配置镜像加速4. Docker镜像常用命令列出镜像列表搜索镜像下载镜像查看镜像版本删除镜像构建镜像推送镜像 5. Docker容器常用命令新建并启动容器列出容器停止容器启动容器进入容器删除容器&#xff08;慎用&#xff09;查看…

概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

1 离散型随机变量 1.1 0-1分布 设随机变量X的所有可能取值为0与1两个值&#xff0c;其分布律为 若分布律如上所示&#xff0c;则称X服从以P为参数的(0-1)分布或两点分布。记作X~ B(1&#xff0c;p) 0-1分布的分布律利用表格法表示为: X01P1-PP 0-1分布的数学期望E(X) 0 *…

面向对象编程的艺术:构建高效可扩展的软件

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

zabbix6.4.0配置邮件及企微机器人群聊告警

一、邮件告警 根据公司邮箱自行配置&#xff0c;电子邮件、用户账号密码填自己的邮箱账号密码 动作本次使用的默认的&#xff0c;如果为了更加美观可自行修改。 二、企业微信机器人告警 首先在企微上创建群聊&#xff0c;之后添加群聊机器人 将地址复制&#xff0c;后面用 …

使用NVM管理多个版本的node.js

1、nvm介绍&#xff1a; nvm全英文也叫node.js version management&#xff0c;是一个nodejs的版本管理工具。nvm是node.js版本管理工具&#xff0c;为了解决node.js各种版本存在不兼容现象可以通过它可以安装和切换不同版本的node.js 2、下载nvm地址&#xff1a; https://d…

测试用例设计方法六脉神剑——第一剑:入门试招,等价边界初探 | 京东物流技术团队

1 背景及问题 G.J.Myers在<软件测试技巧>中提出&#xff1a;测试是为了寻找错误而运行程序的过程&#xff0c;一个好的测试用例是指很可能找到迄今为止尚未发现的错误的测试&#xff0c; 一个成功的测试是揭示了迄今为止尚未发现的错误的测试。 对于新手来说&#xff0…

ChatGPT成为“帮凶”:生成虚假数据集支持未知科学假设

ChatGPT 自发布以来&#xff0c;就成为了大家的好帮手&#xff0c;学生党和打工人更是每天都离不开。 然而这次好帮手 ChatGPT 却帮过头了&#xff0c;莫名奇妙的成为了“帮凶”&#xff0c;一位研究人员利用 ChatGPT 创建了虚假的数据集&#xff0c;用来支持未知的科学假设。…

Flutter加固原理及加密处理

​ 引言 为了保护Flutter应用免受潜在的漏洞和攻击威胁&#xff0c;加固是必不可少的措施之一。Flutter加固原理主要包括代码混淆、数据加密、安全存储、反调试与反分析、动态加载和安全通信等多个方面。通过综合运用这些措施&#xff0c;可以提高Flutter应用的安全性&#xf…

从订阅式需求发展,透视凌雄科技DaaS模式增长潜力

订阅制&#xff0c;C端消费者早已耳熟能详&#xff0c;如今也凭借灵活、服务更新稳定的特点&#xff0c;逐渐成为B端企业服务的新热点。 比如对中小企业而言&#xff0c;办公IT设备等配套支出都必不可少&#xff0c;但收入本身并不稳定&#xff0c;购置大堆固定资产&#xff0…

利用 NRF24L01 无线收发模块实现传感器数据的无线传输

NRF24L01 是一款常用的无线收发模块&#xff0c;适用于远程控制和数据传输应用。本文将介绍如何利用 NRF24L01 模块实现传感器数据的无线传输&#xff0c;包括硬件的连接和配置&#xff0c;以及相应的代码示例。 一、引言 NRF24L01 是一款基于 2.4GHz 射频通信的低功耗无线收发…

Python实现FA萤火虫优化算法优化BP神经网络分类模型(BP神经网络分类算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 萤火虫算法&#xff08;Fire-fly algorithm&#xff0c;FA&#xff09;由剑桥大学Yang于2009年提出 , …

RPG项目01_场景及人物动画管理器

基于“RPG项目01_UI登录”&#xff0c;新建一个文件夹名为Model&#xff08;模型&#xff09; 将资源场景拖拽至Model中 找到相应场景双击进入 红色报错部分Clear清掉即可&#xff0c;我们可以重做 接下来另存场景 起名为Game 点击保存 场景就保存至Scene中了 在文件夹下新创建…