斐波那契数列模型:在动态规划的丝绸之路上追寻斐波那契的足迹(上)

文章目录

  • 引言
  • 递归与动态规划的对比
  • 递归解法的初探
  • 动态规划的优雅与高效
    • 自顶向下的记忆化搜索
    • 自底向上的迭代法
  • 性能分析与比较
  • 小结

在这里插入图片描述

引言

斐波那契数列,这一数列如同一条无形的丝线,穿越千年时光,悄然延续其魅力。其定义简单而优美:

F(0)=0,F(1)=1

F(n)=F(n−1)+F(n−2), n>1

这看似简单的递归公式,却蕴含着深刻的数学结构,成为计算机科学中的经典问题之一。斐波那契数列不仅仅出现在数学课本上,它在自然界、计算机算法、金融模型等领域中无处不在。对于程序员而言,斐波那契数列不仅是一个练习递归的好题目,更是一个优化算法的标杆。

在这篇文章中,我们将通过动态规划的技术来探讨如何高效地求解斐波那契数列,从而避免传统递归方法中低效的冗余计算。我们将以 C 语言为例,展示动态规划方法如何一步步揭开这一问题的面纱。

递归与动态规划的对比

递归解法的初探

初识斐波那契数列,往往从递归开始。递归是一个从问题的定义出发,层层拆解的过程。我们通过编写递归函数来模拟斐波那契数列的计算:

#include <stdio.h>int fibonacci_recursive(int n) {if (n <= 1) {return n;}return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2);
}int main() {int n = 10;printf("Fibonacci(%d) = %d\n", n, fibonacci_recursive(n));return 0;
}

代码分析

这段代码极其直观,正如数列的定义那样,利用递归直接表达了斐波那契数列的生成。

然而,这种实现方式的效率极低。

  • 对于每一个fibonacci_recursive(n) 调用,都会同时递归调用 fibonacci_recursive(n-1) fibonacci_recursive(n-2),造成了大量的重复计算。例如,在计算 fibonacci_recursive(5)
    时,会重复计算 fibonacci_recursive(3) 和 fibonacci_recursive(2)。

  • 通过这样的计算树可以看到,随着 n 值的增加,重复计算的次数呈指数级增长。时间复杂度为
    O(2^n),这对于较大的 n 来说,已经无法接受。

动态规划的优雅与高效

递归方法的瓶颈在于大量的重复计算,而动态规划(Dynamic Programming, DP)正是为了解决这个问题而应运而生。

动态规划的精髓在于通过存储中间结果来避免重复计算,将复杂的递归结构转化为迭代计算。

动态规划解决斐波那契数列问题的关键在于,子问题之间是重叠的,即在计算 F(n) 时,F(n-1) 和 F(n-2) 都已经被计算过,因此可以将这些中间结果保留,从而提高效率。

自顶向下的记忆化搜索

自顶向下的动态规划方法结合了递归和记忆化技术。在递归的过程中,我们通过一个数组或哈希表来存储已经计算过的结果,避免了重复计算。
以下是 C 语言的实现:

#include <stdio.h>#define MAX 1000int memo[MAX];// 初始化 memo 数组
void initialize_memo() {for (int i = 0; i < MAX; i++) {memo[i] = -1;}
}// 使用记忆化递归计算斐波那契数列
int fibonacci_memo(int n) {if (n <= 1) {return n;}if (memo[n] != -1) {return memo[n];  // 返回已经计算过的结果}// 否则,计算并保存结果memo[n] = fibonacci_memo(n - 1) + fibonacci_memo(n - 2);return memo[n];
}int main() {int n = 10;initialize_memo();  // 初始化 memo 数组printf("Fibonacci(%d) = %d\n", n, fibonacci_memo(n));return 0;
}

代码分析:

  • 在这个实现中,我们使用了一个名为 memo 的数组来保存计算过的斐波那契数值。每次计算 fibonacci_memo(n) 时,首先检查 memo[n] 是否已经有值,如果有值,则直接返回结果;如果没有值,则计算并保存结果。
  • 这样做的时间复杂度为 O(n),空间复杂度为 O(n)。

自底向上的迭代法

在进一步优化中,我们可以将自顶向下的递归方法转换为自底向上的迭代方法,这不仅减少了递归调用的开销,还可以进一步优化空间复杂度。
在计算斐波那契数列时,我们只需要记住前两个数,而不需要存储整个序列。
以下是实现代码:

#include <stdio.h>// 自底向上的迭代法
int fibonacci_bottom_up(int n) {if (n <= 1) {return n;}int a = 0, b = 1;for (int i = 2; i <= n; i++) {int temp = a + b;a = b;b = temp;}return b;
}int main() {int n = 10;printf("Fibonacci(%d) = %d\n", n, fibonacci_bottom_up(n));return 0;
}

代码分析:

在这段代码中,我们从最小的两个数 0 和 1 开始,通过迭代逐步计算出更大的斐波那契数。我们仅用两个变量 a 和 b
来存储前两个数,从而使得空间复杂度降到了 O(1)。

性能分析与比较

通过对比不同方法的时间复杂度和空间复杂度,我们可以清楚地看到动态规划方法的优势。
在这里插入图片描述

从表中可以看到,自底向上的迭代法在时间和空间复杂度上都具有最优性能。
它不仅避免了递归调用的栈空间开销,还通过迭代方法有效降低了空间需求。

小结

斐波那契数列,作为数学中的一颗璀璨明珠,在计算机科学中具有举足轻重的地位。它不仅教会我们递归的基本思想,更让我们意识到优化的重要性。通过动态规划,我们能够以一种高效、优雅的方式解决斐波那契问题,避免了递归方法中冗余计算的困扰。

本篇关于动态规划解决斐波那契模型的讲解就暂告段落啦,希望能对大家的学习产生帮助,欢迎各位佬前来支持斧正!!!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/20951.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

php 系统命令执行及绕过

文章目录 php的基础概念php的基础语法1. PHP 基本语法结构2. PHP 变量3.输出数据4.数组5.超全局变量6.文件操作 php的命令执行可以执行命令的函数命令执行绕过利用代码中命令&#xff08;如ls&#xff09;执行命令替换过滤过滤特定字符串神技&#xff1a;利用base64编码解码的绕…

使用vscode调试transformers源码

简要介绍如何使用vscode调试transformers源码 以源码的方式安装transformers&#xff08;官方手册为Editable install&#xff09; 优先参考官方手册 git clone https://github.com/huggingface/transformers.git cd transformers pip install -e .以下展示transformers/exa…

macos安装jmeter测试软件

java环境安装 a. 验证安装环境 java -version # 如果有版本信息&#xff0c;说明已安装 b. 安装jdk # 安装 Homebrew&#xff08;如未安装&#xff09; /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" # 安装 O…

2023年全国职业院校技能大赛GZ073网络系统管理赛项赛题第10套模块A:网络构建

​有问题请留言或主页私信咨询 2023年全国职业院校技能大赛 GZ073网络系统管理赛项 赛题第10套 模块A&#xff1a;网络构建 ​ ​ **目 **录 任务清单 &#xff08;一&#xff09;基础配置 &#xff08;二&#xff09;有线网络配置 &#xff08;三&#xff09;无线…

若依-@Excel新增注解numberFormat

Excel注解中原本的scale会四舍五入小数&#xff0c;导致进度丢失 想要的效果 显示的时候保留两个小数真正的数值是保留之前的数值 还原过程 若以中有一個專門的工具类&#xff0c;用来处理excel的 找到EXCEL导出方法exportExcel()找到writeSheet,写表格的方法找到填充数据的方法…

动静态链接与加载

目录 静态链接 ELF加载与进程地址空间&#xff08;静态链接&#xff09; 动态链接与动态库加载 GOT表 静态链接 对于多个.o文件在没有链接之前互相是不知到对方存在的&#xff0c;也就是说这个.o文件中调用函数的的跳转地址都会被设定为0&#xff08;当然这个函数是在其他.…

python-leetcode 33.排序链表

题目&#xff1a; 给定链表的头结点head,请将其按升序排列&#xff0c;并返回排序后的链表 方法一&#xff1a;自顶向下归并排序 链表自顶向下归并排序的过程&#xff1a; 1.找到链表的中点&#xff0c;以中点为分界&#xff0c;将链表拆分成两个子链表。寻找链表的中点可以…

PyQt加载UI文件

1.动态加载 import sys from PySide6 import QtCore,QtWidgets from PySide6.QtWidgets import * from PySide6.QtUiTools import QUiLoaderclass readfile(QWidget):def __init__(self):super().__init__()self.uiQUiLoader().load("test.ui",self) self.__c…

深入解析NoSQL数据库:从文档存储到图数据库的全场景实践

title: 深入解析NoSQL数据库:从文档存储到图数据库的全场景实践 date: 2025/2/19 updated: 2025/2/19 author: cmdragon excerpt: 通过电商、社交网络、物联网等12个行业场景,结合MongoDB聚合管道、Redis Stream实时处理、Cassandra SSTable存储引擎、Neo4j路径遍历算法等42…

EasyRTC:开启智能硬件与全平台互动新时代

在当今数字化时代&#xff0c;实时音视频互动已成为企业与用户沟通、协作和娱乐的关键技术。无论是在线教育、视频会议、远程医疗还是互动直播&#xff0c;流畅、高效的互动体验都是成功的关键。然而&#xff0c;实现跨平台、低延迟且功能丰富的音视频互动并非易事——直到 Eas…

【前端框架】vue2和vue3的区别详细介绍

Vue 3 作为 Vue 2 的迭代版本&#xff0c;在性能、语法、架构设计等多个维度均有显著的变革与优化。以下详细剖析二者的区别&#xff1a; 响应式系统 Vue 2 实现原理&#xff1a;基于 Object.defineProperty() 方法实现响应式。当一个 Vue 实例创建时&#xff0c;Vue 会遍历…

springboot-ffmpeg-m3u8-convertor nplayer视频播放弹幕 artplayer视频弹幕

学习链接 ffmpeg-cli-wrapper - 内部封装了操作ffmpeg命令的java类库&#xff0c;它提供了一些类和方法&#xff0c;可以方便地构建和执行 ffmpeg 命令&#xff0c;而不需要直接操作字符串或进程。并且支持异步执行和进度监听 springboot-ffmpeg-m3u8-convertor - gitee代码 …

Linux下centos系统中使用docker容器中的ollama下载deepseek速度太慢解决办法

以下是使用shell脚本实现的一个示例&#xff0c;该脚本会尝试下载一个名为"deepseek-r1:32b"的模型。通过每隔60秒中断一次下载操作&#xff0c;从何恢复下载速度。亲测有效,其中需要将模型改为你自己要下载的模型 #!/bin/bashwhile true; do# 检查模型是否已下载完…

自动创建spring boot应用(eclipse版本)

使用spring starter project创建项目 设置Service URL 把Service URL设置为 https://start.aliyun.com/ 如下图&#xff1a; 使用这个网址&#xff0c;创建项目更快。 选择Spring Web依赖 项目结构 mvnw和mvnw.cmd:这是maven包装器&#xff08;wrapper&#xff09;脚本&…

基于flask+vue的租房信息可视化系统

✔️本项目利用 python 网络爬虫抓取某租房网站的租房信息&#xff0c;完成数据清洗和结构化&#xff0c;存储到数据库中&#xff0c;搭建web系统对各个市区的租金、房源信息进行展示&#xff0c;根据各种条件对租金进行预测。 1、数据概览 ​ 将爬取到的数据进行展示&#xff…

uniapp 滚动尺

scale组件代码&#xff08;部分class样式使用到了uview1.0的样式&#xff09; <template><view><view class"scale"><view class"pointer u-flex-col u-col-center"><u-icon name"arrow-down-fill" size"26&qu…

分布式大语言模型服务引擎vLLM论文解读

论文地址&#xff1a;Efficient Memory Management for Large Language Model Serving with PagedAttention 摘要 大语言模型&#xff08;LLMs&#xff09;的高吞吐量服务需要一次对足够多的请求进行批处理。然而&#xff0c;现有系统面临困境&#xff0c;因为每个请求的键值…

【HeadFirst系列之HeadFirst设计模式】第5天之工厂模式:比萨店的秘密武器,轻松搞定对象创建!

工厂模式&#xff1a;比萨店的秘密武器&#xff0c;轻松搞定对象创建&#xff01; 大家好&#xff0c;今天我们来聊聊设计模式中的工厂模式。如果你曾经为对象的创建感到头疼&#xff0c;或者觉得代码中到处都是 new 关键字&#xff0c;那么工厂模式就是你的救星&#xff01;本…

CSS基本选择器

1. 通配选择器 作用&#xff1a;可以选中所有的 HTML 元素。 语法&#xff1a; * { 属性名: 属性值; } 举例&#xff1a; <!DOCTYPE html> <html lang"zh-cn"> <head><meta charset"UTF-8"><meta name"viewport" …

Idea24.3 如何设置Git忽略某一个文件

文章目录 左上角找到commit选中你要忽略的文件 右键New Changelist给这个文件夹名称和描述 点击ok将要忽略的文件添加到这个文件夹 左上角找到commit 选中你要忽略的文件 右键New Changelist 给这个文件夹名称和描述 点击ok 将要忽略的文件添加到这个文件夹