ChatGPT是否可以写出一篇论文

利用AI反哺教育和学术,在训练它写论文的过程中你学到的,比你自己写一篇论文学到的更多。让工具回归工具,让我们变成更好的我们!

第一步:现象确认

第二步:学术概念化

第三步:定位优质的学术资源

a:聚焦感兴趣的学术概念,定位学术文献 b:换不同的方式问,保证文献的质量和丰富性 C:让它总结这些文献,你和AI同频学习
ps:如果学习中有一些有趣的子概念和相关概念,可以继续追问学习 四、对比分析
a:进行概念对比
b:进行时间对比 C:进行地域对比


五、启示分析 通过对比,找到兴趣点进一步分析,给出结论或者现实启示
六、写初稿
先定标题:既有逻辑,又出其不意 再定大纲:既有针对性,又符合学术规范;
再逐个部分写出来,记得检查文献的真伪,假的要替换成真的; 总结:你和AI的定位:
你是主人,AI是助手:帮你搜集资料,连接知识,开脑洞

原视频链接:

https://www.bilibili.com/video/BV16s4y177Pz/?spm_id_from=333.788&vd_source=88ed8e04492394f9435927d654510100

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/39705.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网页版即时通讯聊天工具,支持主流浏览器,无需安装即可使用

基于信贸通即时通讯系统开发的网页版即时通讯,无需安装支持主流浏览器在线直接运行。可以与电脑版本和手机版本互通。支持文本聊天,标签,图片,文件传输,还支持位置接收等。 特点: 1、简单快速的集成到自己…

Ims跟2/3G会议电话(Conference call)流程差异介绍

2/3G Conference call 合并(Merged)通话前,两路电话只能一路保持(Hold),一路通话(Active)。 主叫Merged操作,Hold的一路会变成Active,进入会议通话。 例如终端A跟C通话,再跟B通话,此时B就是Active状态,C从Active变成Hold状态。Merged进入会议通话后,C又从Hold变…

英文学术会议参会必读-青年学者会议和演讲英语指南

本书介绍 本书讨论并展示在学术会议上使用的英语话语的类型,并从多角度为准会议参与者提供了指导。它是根据参加的众多学术会议的研究结果和作者的观察结果而得出的,基于对应用语言学的公认研究方法,以及针对学生,ESP老师&#xf…

jitsi-meet 主持人退出会议后结束会议室(网页访问)

实现功能: 当主持人退出当前会议后,要求参与会议的其他人员也都退出当前会议。 修改代码: 修改后,通过make编译代码。 将css/all.css 和 libs文件夹下的文件上传至会议服务器的对应目录下。重启会议服务器即可。 /usr/share/ji…

chatgpt赋能python:Python根据IP地址获取地理位置

Python根据IP地址获取地理位置 随着全球化的发展,网络已经成为人们获取信息和交流的主要渠道。在网站的开发和运营中,了解访问者的地理位置和所处时区是非常重要的。这样可以更好地定位目标受众并制定针对性的营销策略。本文将介绍如何使用Python根据IP…

一文读懂信息量、信息熵、相对熵(KL散度)和交叉熵

在人工智能深度学习的应用中,损失函数绝对是模型网络学习质量的关键。我们使用损失函数来表示的真实值与预测值之间的距离,进而指导模型的收敛方向。对于标量来说,我们能够很容易想到使用方差来描述误差。那么,如何表示向量之间的…

面板数据进行熵值法

面板数据熵值法分析流程如下: 一、案例背景 当前有9家公司连续5年(2018-2022年)的财务指标数据,想要通过这份数据,确定各个财务指标的权重。熵值法根据指标离散程度确定赋权大小,客观公正准确度高。本次收…

跨数据中心下的 Kafka 高可用架构分析

导语 本文介绍了 Kafka 跨数据中心的两种部署方式,简要分析两种方式下的不同架构以及优缺点,对这些架构可能碰到的问题也提供了一些解决思路;同时也说明了 Kafka 跨数据中心部署的社区解决方案和商业化解决方案。 背景 Kafka 作为世界上最…

分布式的流处理平台Kafka

目录: 一、简介二、基本概念三、生产者使用详解四、发送消息五、消费者代码示例 一、简介 ApacheKafka 是一个分布式的流处理平台。它具有以下特点: 支持消息的发布和订阅,类似于 RabbtMQ、ActiveMQ 等消息队列;支持数据实时处理…

熵_相对熵_散度

1 信息量 意外越大,越不可能发生,概率就越小,信息量也就越大,也就是信息越多。比如说“今天肯定会天黑”,实现概率100%,说了和没说差不多,信息量就是0。 详见:2. 信息量 1.1 公式 …

流批一体计算引擎-4-[Flink]消费kafka实时数据

Python3.6.9 Flink 1.15.2消费Kafaka Topic PyFlink基础应用之kafka 通过PyFlink作业处理Kafka数据 1 环境准备 1.1 启动kafka (1)启动zookeeper zkServer.sh start(2)启动kafka cd /usr/local/kafka/ nohup ./bin/kafka-server-start.sh ./config/server.properties >&g…

【仿牛客网笔记】 Kafka,构建TB级异步消息系统——发送系统通知、显示系统通知

定义时间主题 判断消息内容是否为空,消息格式是否错误。 系统通知是后台发给用户 发送站内通知 构造一个Message对象 设置站内的值 判断是否有数据,然后放入到message中 对CommentController、LikeController、FollowController进行处理。 需要注入…

kafka集群压测与优化

影响kafka集群性能的因数有多个,网络带宽、cpu、内存、磁盘读写速度、副本数、分区数、broker数量、内存缓存等因素都会影响kafka集群的性能 1.优化kafka集群配置 server.properties配置文件优化 num.network.threads4 num.io.threads4 socket.send.buffer.bytes…

熵,信息熵,香农熵,微分熵,交叉熵,相对熵

2019-07-13 https://blog.csdn.net/landstream/article/details/82383503 https://blog.csdn.net/pipisorry/article/details/51695283 https://www.zhihu.com/question/41252833 https://cloud.tencent.com/developer/article/1397504 按顺序查看更容易理解 0、背景 在信息论中…

【Hive】云任务大量卡住故障分析

项目场景: 上一章节我们简单介绍到了JVM调优相关的知识,本章节结合日常故障处理进一步说明相关的使用 问题描述 在云上,hive任务出现大面积卡住的现象,但并无任何报错信息,具体如下: 原因分析&#xff1…

Linux服务器出现异常和卡顿排查思路和步骤

目录 前言一、查看内存使用情况二、查看磁盘使用情况三、top命令3.1 jmap分析堆内存配置信息和使用情况3.2 jstack分析线程的执行情况3.3 jstat查看各个区域占堆百分比 四、其他指令总结 前言 Linux 服务器出现异常和卡顿的原因有很多,以下是一些常见的原因&#x…

熵、交叉熵和散度

熵 自信息 I(x) - log p(x) 对于分布为P(x)的随机变量X,自信息的数学期望 即熵H(X)定义为: 熵越高,随机变量信息越高,反之越少。不同概率分布对应熵如下:P p()熵10001/21/41/41/31/31/3 概率分布越均匀&#xff0…

【腾讯轻量应用服务器上部署kafka并通过flink读取kafka数据】

环境准备 经过1个月的摸索,最终选择在腾讯云上搭建一个学习环境。当时选择原因还是新用户有优惠(150左右3年),但现在看1核2g的配置勉强够用,建议后续小伙伴选择时最好是2核4g配置。 由于是单节点安装,需要准备如下资源&#xff1…

【Twitter Storm系列】flume-ng+Kafka+Storm+HDFS 实时系统搭建

技术交流群:59701880 深圳广州hadoop好友会 微信公众号:后续博客的文档都会转到微信公众号中。 一直以来都想接触Storm实时计算这块的东西,最近在群里看到上海一哥们罗宝写的FlumeKafkaStorm的实时日志流系统的搭建文档,自己也跟…

学习笔记之信息量、熵、KL散度、交叉熵的一些介绍

文章目录 信息量熵KL散度(相对熵)交叉熵参考 信息量 以前我也一直只是知道信息量的计算公式,也有想过为什么会是这样,但是因为要学的东西太多了,就没怎么深究,直到看了“交叉熵”如何做损失函数&#xff1…