【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】

【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】

文章目录

  • 【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】
    • 1.推导
    • 2. Code
    • Reference

结果先放在前面

Image

1.推导

在学习PEARL算法的时候,encoder的设计涉及到了高斯分布的乘积,对此有点疑问,进行推导补票。

首先高斯分布(Guassian Distribution)的概率密度函数为

f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp({-\frac{(x-\mu)^2}{2\sigma^2}}) f(x)=2π σ1exp(2σ2(xμ)2)

通常将单位高斯分布记为 N ∼ ( 0 , 1 ) \mathcal{N}\sim(0,1) N(0,1),一般的高斯分布记为 N ∼ ( μ , σ ) \mathcal{N}\sim(\mu,\sigma) N(μ,σ),其中 μ \mu μ是高斯分布的均值(mean), σ \sigma σ是高斯分布的标准差(standard variance), σ 2 \sigma^2 σ2是高斯分布的方差(variance)。

​ 接下来推导高斯分布的乘积,假设有两个高斯分布,分别为
N 1 ∼ ( μ 1 , σ 1 ) , N 2 ∼ ( μ 2 , σ 2 ) \mathcal{N}_1\sim(\mu_1,\sigma_1),\mathcal{N}_2\sim(\mu_2,\sigma_2) N1(μ1,σ1),N2(μ2,σ2),那么其概率密度函数的乘积为

f 1 ( x ) f 2 ( x ) = 1 2 π σ 1 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 ) × 1 2 π σ 2 exp ⁡ ( − ( x − μ 2 ) 2 2 σ 2 2 ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 − ( x − μ 2 ) 2 2 σ 2 2 ) \begin{align} f_1(x)f_2(x) & = \frac{1}{\sqrt{2\pi}\sigma_1}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2}) \times \frac{1}{\sqrt{2\pi}\sigma_2}\exp(-\frac{(x-\mu_2)^2}{2\sigma_2^2}) \\ & = \frac{1}{2\pi\sigma_1\sigma_2}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(x-\mu_2)^2}{2\sigma_2^2} ) \end{align} f1(x)f2(x)=2π σ11exp(2σ12(xμ1)2)×2π σ21exp(2σ22(xμ2)2)=2πσ1σ21exp(2σ12(xμ1)22σ22(xμ2)2)

我们单独分析指数部分,

( x − μ 1 ) 2 2 σ 1 2 + ( x − μ 2 ) 2 2 σ 2 2 = ( σ 1 2 + σ 2 2 ) x 2 − 2 x ( μ 2 σ 1 2 + μ 1 σ 2 2 ) + ( μ 1 2 σ 2 2 + μ 2 2 σ 1 2 ) 2 σ 1 2 σ 2 2 = x 2 − 2 x μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 \begin{align} \frac{(x-\mu_1)^2}{2\sigma_1^2} + \frac{(x-\mu_2)^2}{2\sigma_2^2} & = \frac{(\sigma_1^2 + \sigma_2^2)x^2 - 2x(\mu_2\sigma_1^2 + \mu_1\sigma_2^2) + (\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2) }{2\sigma_1^2\sigma_2^2} \\ & = \frac{ x^2 - 2x\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2} + \frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} }{ \frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} \\ & = \frac{ (x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2 + \frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2 }{ \frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} } \\ & = \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} + \frac{\frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} \end{align} 2σ12(xμ1)2+2σ22(xμ2)2=2σ12σ22(σ12+σ22)x22x(μ2σ12+μ1σ22)+(μ12σ22+μ22σ12)=σ12+σ222σ12σ22x22xσ12+σ22μ2σ12+μ1σ22+σ12+σ22μ12σ22+μ22σ12=σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2+σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2=σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2+σ12+σ222σ12σ22σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2

继续化简上面的常数部分

μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( μ 1 2 σ 2 2 + μ 2 2 σ 1 2 ) ( σ 1 2 + σ 2 2 ) + ( μ 2 σ 1 2 + μ 1 σ 2 2 ) 2 2 σ 1 2 σ 2 2 ( σ 1 2 + σ 2 2 ) = ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) \begin{align} \frac{\frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} & = \frac{(\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2)(\sigma_1^2 + \sigma_2^2) + (\mu_2\sigma_1^2 + \mu_1\sigma_2^2)^2}{2\sigma_1^2\sigma_2^2(\sigma_1^2+\sigma_2^2)} \\ & = \frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)} \end{align} σ12+σ222σ12σ22σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2=2σ12σ22(σ12+σ22)(μ12σ22+μ22σ12)(σ12+σ22)+(μ2σ12+μ1σ22)2=2(σ12+σ22)(μ1μ2)2

则我们可以将概率密度函数的乘积写为

f 1 ( x ) f 2 ( x ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 − ( x − μ 2 ) 2 2 σ 2 2 ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 − ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) ) = 1 2 π ( σ 1 2 + σ 2 2 ) exp ⁡ ( − ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) ) ⏟ S g × 1 2 π σ 1 2 σ 2 2 σ 1 2 + σ 2 2 exp ⁡ ( − ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 ) = S g × 1 2 π μ exp ⁡ ( − ( x − μ ) 2 2 σ ) \begin{align} f_1(x)f_2(x) & =\frac{1}{2\pi\sigma_1\sigma_2}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(x-\mu_2)^2}{2\sigma_2^2} ) \\ & = \frac{1}{2\pi\sigma_1\sigma_2} \exp( - \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} - \frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)} ) \\ & = \underbrace{\frac{1}{\sqrt{2\pi(\sigma_1^2+\sigma_2^2)}}\exp(-\frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)})}_{S_g} \times \frac{1}{\sqrt{2\pi \frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} }}\exp(- \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}}) \\ & = S_g\times \frac{1}{\sqrt{2\pi \mu}} \exp(-\frac{(x-\mu)^2}{2\sigma}) \end{align} f1(x)f2(x)=2πσ1σ21exp(2σ12(xμ1)22σ22(xμ2)2)=2πσ1σ21exp(σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)22(σ12+σ22)(μ1μ2)2)=Sg 2π(σ12+σ22) 1exp(2(σ12+σ22)(μ1μ2)2)×2πσ12+σ22σ12σ22 1exp(σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2)=Sg×2πμ 1exp(2σ(xμ)2)

其中

μ = μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 , σ 2 = σ 1 2 σ 2 2 σ 1 2 + σ 2 2 \mu = \frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2}, \sigma^2 =\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} μ=σ12+σ22μ2σ12+μ1σ22,σ2=σ12+σ22σ12σ22

所以两个高斯分布的乘积仍然为高斯分布,且均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2 S g S_g Sg被称为缩放因子,即相乘后的分布函数为一个被压缩或者放大的高斯分布,相乘后的概率密度的积分不等于1,但其方差和均值性质不变,仍然符合高斯分布。

​ 拓展到多个高斯分布相乘的结果,可以得到

μ = μ 1 σ 2 2 σ 3 2 + μ 2 σ 1 2 σ 3 2 + μ 3 σ 1 2 σ 2 2 σ 1 2 σ 2 2 + σ 1 2 σ 3 2 + σ 2 2 σ 3 2 , σ 2 = σ 1 2 σ 2 2 σ 3 2 σ 1 2 σ 2 2 + σ 1 2 σ 3 2 + σ 2 2 σ 3 2 \mu = \frac{\mu_1\sigma_2^2\sigma_3^2 + \mu_2\sigma_1^2\sigma_3^2 + \mu_3\sigma_1^2\sigma_2^2 }{\sigma_1^2\sigma_2^2 + \sigma_1^2\sigma_3^2 + \sigma_2^2\sigma_3^2}, \sigma^2 = \frac{\sigma_1^2\sigma_2^2\sigma_3^2}{\sigma_1^2\sigma_2^2 + \sigma_1^2\sigma_3^2 + \sigma_2^2\sigma_3^2} μ=σ12σ22+σ12σ32+σ22σ32μ1σ22σ32+μ2σ12σ32+μ3σ12σ22,σ2=σ12σ22+σ12σ32+σ22σ32σ12σ22σ32

2. Code

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm# 设定均值和标准差
mean = np.array([1, 2, 3])
var = np.array([1, 3, 5])x = np.linspace(-15, 15, 1000)
pdfs = []
# 计算高斯分布的概率密度函数(Probability Density Function, PDF)
for mu, sigma in zip(mean, var):pdfs.append(norm.pdf(x, mu, np.sqrt(sigma)))# 绘制高斯分布曲线
plt.plot(x, pdfs[0], 'r-', linewidth=2, label='mean=1, var=1')
plt.fill_between(x, pdfs[0], color='red', alpha=0.5)
plt.plot(x, pdfs[1], 'g-', linewidth=2, label='mean=2, var=3')
plt.fill_between(x, pdfs[1], color='g', alpha=0.5)
plt.plot(x, pdfs[2], 'b-', linewidth=2, label='mean=3, var=5')
plt.fill_between(x, pdfs[2], color='b', alpha=0.5)# 计算三个高斯分布的乘积
prod_mean = 1.0 / np.sum(np.reciprocal(mean), axis=0)
prod_var = prod_mean * np.sum(mean / var, axis=0)
pdf = norm.pdf(x, prod_mean, np.sqrt(prod_var))
plt.plot(x, pdf, 'k--', linewidth=2, label='product')
plt.fill_between(x, pdf, color='y', alpha=0.7)# 添加标签和标题
plt.xlabel('Value')
plt.ylabel('Probability Density')
plt.title('Normal Distribution')
plt.legend()# 显示图形
plt.show()

Reference

https://blog.csdn.net/chaosir1991/article/details/106910668

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/210793.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux下安装Nginx

目录 Nginx简介 Nginx安装 Nginx指令 停止nginx服务 安全退出 重新加载配置文件 查看nginx进程 Nginx简介 Nginx 是一个高性能的HTTP和反向代理web服务器,其特点是占有内存少,并发能力强,其并发能力在同类型的网页服务器中表现较好。 …

行业内卷严重到什么程度了?

一.内卷现状 最近大家都吐槽找工作难,确实很难。 不得不说,现在找工作的难度是以前的很多倍。甚至可以说地狱级都不为过。 以前只要简历一挂到网上,就有很多电话打过来。特别是在一线城市,各种类型企业的HR都来找,希…

DFT(离散傅里叶变换)的通俗理解

本文包含了博主对离散傅里叶变换,负频率,实信号与复信号频谱的理解,如有不妥,欢迎各位批评指正与讨论。 文章目录 DFT的理解信号的频谱实信号的频谱复信号的频谱 DFT的理解 傅里叶变换是一种将信号从时域转换到频域的数学工具。…

TCP_握手+挥手过程状态变化分析

TCP状态解读 握手挥手过程状态变化 同时握手 双发同时发起syn请求,状态变化过程如下: 图片来源:http://www.tcpipguide.com/free/t_TCPConnectionEstablishmentProcessTheThreeWayHandsh-4.htm 同时挥手 4次挥手,可以理解为2…

2023.12.2 做一个后台管理网页(左侧边栏实现手风琴和隐藏/出现效果)

2023.12.2 做一个后台管理网页(左侧边栏实现手风琴和隐藏/出现效果) 网页源码见附件,比较简单,之前用很多种方法实现过该效果,这次的效果相对更好。 实现功能: (1)实现左侧边栏的手…

智安网络|语音识别技术:从历史到现状与未来展望

语音识别技术是一种将语音信号转化为可识别的文本或命令的技术,近年来得到了广泛应用和关注。 一. 语音识别的发展现状 1.历史发展 语音识别技术的起源可以追溯到20世纪50年代,但直到近年来取得了显著的突破和进展。随着计算机性能的提升和深度学习算法…

用户反馈组件实现(Vue3+ElementPlus)含图片拖拽上传

用户反馈组件实现&#xff08;Vue3ElementPlus&#xff09;含图片拖拽上传 1. 页面效果1.1 正常展示1.2 鼠标悬浮1.3 表单 2. 代码部分1.2 html、ts1.2 less部分 3. 编码过程遇到的问题 1. 页面效果 1.1 正常展示 1.2 鼠标悬浮 1.3 表单 2. 代码部分 1.2 html、ts <templ…

大部分人都不知道微信语音是可以取消的

在微信聊天时&#xff0c;许多人都喜欢使用微信语音聊天&#xff0c;因为这样既省时又不需要打字&#xff0c;使用起来非常便捷。然而&#xff0c;不少人发现微信语音有一个小缺点&#xff0c;那就是一旦说错话&#xff0c;只要一松手语音就自动发送出去了&#xff0c;根本来不…

RT-Thread Studio文件消失不见或被排除构建

不得不说RT-Thread Studio里面配置真多&#xff0c;今天我同事的电脑发现根本没有被画斜杠的文件夹&#xff0c;导致我想移植f1的写内部flash这个&#xff08;可以看上一个文章&#xff09;时候不能直接点击属性排除构建&#xff0c;然后在网上查找的时候也没怎么找到说法&…

AIGC发展史

1 AIGC概况 1.1 AIGC定义 AIGC&#xff08;AI Generated Content&#xff09;是指利用人工智能技术生成的内容。它也被认为是继PGC,UGC之后的新型内容生产方式&#xff0c;AI绘画、AI写作等都属于AIGC的具体形式。2022年AIGC发展速度惊人&#xff0c;迭代速度更是呈现指数级发…

会声会影2024购买多少钱 会声会影在哪里购买

掌握视频编辑技术&#xff0c;能为我们的工作和生活带来很多帮助。例如&#xff1a;将我们精心编辑的视频&#xff0c;上传到抖音、快手等平台进行变现&#xff1b;通过天马行空的视频创意&#xff0c;摇身一变成为B站up主。因此&#xff0c;拥有一款像会声会影这样的视频编辑软…

树_二叉搜索树累加求和

//给出二叉 搜索 树的根节点&#xff0c;该树的节点值各不相同&#xff0c;请你将其转换为累加树&#xff08;Greater Sum Tree&#xff09;&#xff0c;使每个节点 node 的新值等于原树中大于或等于 // node.val 的值之和。 // // 提醒一下&#xff0c;二叉搜索树满足下列约束…

UData+StarRocks在京东物流的实践 | 京东物流技术团队

1 背景 数据服务与数据分析场景是数据团队在数据应用上两个大的方向&#xff0c;行业内大家有可能会遇到下面的问题&#xff1a; 1.1 数据服务 烟囱式开发模式&#xff1a;每来一个需求开发一个数据服务&#xff0c;数据服务无法复用&#xff0c;难以平台化&#xff0c;技术…

java项目日常运维需要的文档资料

一、前言 java项目开发完成&#xff0c;部署上线&#xff0c;进入项目运维阶段&#xff0c;日常工作需要准备哪些资料和文档?当项目上线后&#xff0c;运行一段时间&#xff0c;或多或少会遇到一些运维上的问题&#xff0c;比如服务器磁盘饱满&#xff0c;服务器CPU&#xff0…

也可Adobe Animate

Animate CC 由原Adobe Flash Professional CC 更名得来&#xff0c;2015年12月2日&#xff1a;Adobe 宣布Flash Professional更名为Animate CC&#xff0c;在支持Flash SWF文件的基础上&#xff0c;加入了对HTML5的支持。并在2016年1月份发布新版本的时候&#xff0c;正式更名为…

Java 设计模式系列:代理模式

文章目录 介绍静态代理基本介绍应用实例静态代理优缺点 动态代理基本介绍JDK 中生成代理对象的 API Cglib 代理基本介绍实现步骤 介绍 1&#xff09;代理模式&#xff1a;为一个对象提供一个替身&#xff0c;以控制对这个对象的访问。即通过代理对象访问目标对象 2&#xff09…

Java链接数据库

本文介绍的是Java链接数据库中的JDBC操作&#xff0c;JDBC虽然现在用的不多&#xff0c;但面试的时候会问道。需要有相应的了解。下面以链接MySQL为例子。 JDBC 什么jdbc Java DataBase Connectivity是一种用于执行SQL语句的Java API&#xff0c;它由一组用Java语言编写的类和…

服务器中启动和停止项目

服务器中启动和停止项目 一、前言二、使用命令启动和关闭项目1、启动项目2、停止项目 三、使用可执行脚本启动和关闭项目1、启动项目2、停止项目 一、前言 在服务器上部署项目&#xff0c;一般就是将项目挂在后台&#xff0c;如果是微服务首选docker-compose&#xff0c;可以看…

2022年高校大数据挑战赛A题工业机械设备故障预测求解全过程论文及程序

2022年高校大数据挑战赛 A题 工业机械设备故障预测 原题再现&#xff1a; 制造业是国民经济的主体&#xff0c;近十年来&#xff0c;嫦娥探月、祝融探火、北斗组网&#xff0c;一大批重大标志性创新成果引领中国制造业不断攀上新高度。作为制造业的核心&#xff0c;机械设备在…

一种新的基于物理的AlGaN/GaN HFET紧凑模型

标题&#xff1a;A new physics-based compact model for AlGaN/GaN HFETs (IEEE MTT-S International Microwave Symposium) 摘要 摘要 - 针对AlGaN/GaN HFET&#xff0c;提出了一种无拟合参数的物理解析模型。对于非饱和操作&#xff0c;建立了两个接入区和栅极下方I-V特性的…