时间序列预测 — GRU实现多变量多步光伏预测(Tensorflow)

目录

1 数据处理

1.1 数据集简介

1.2 导入库文件

1.3 数据集处理

1.4 训练数据构造

2 模型训练与预测

2.1 模型训练

2.2 模型多步预测

2.3 预测可视化


1 数据处理

1.1 数据集简介

实验数据集采用数据集7:常州普利司通光伏数据集(下载链接),包括数据集包括时间、场站名称、辐照强度(Wh/㎡)、 环境温度(℃)、全场功率(kW)等5个特征,时间间隔5min。(注意:辐照强度(Wh/㎡)、 环境温度(℃)、全场功率(kW)特征名前有个空格

# 可视化数据
def visualize_data(data, row, col):cycol = cycle('bgrcmk')cols = list(data.columns)fig, axes = plt.subplots(row, col, figsize=(16, 4))fig.tight_layout()if row == 1 and col == 1:  # 处理只有1行1列的情况axes = [axes]  # 转换为列表,方便统一处理for i, ax in enumerate(axes.flat):if i < len(cols):ax.plot(data.iloc[:,i], c=next(cycol))ax.set_title(cols[i])else:ax.axis('off')  # 如果数据列数小于子图数量,关闭多余的子图plt.subplots_adjust(hspace=0.5)plt.show()visualize_data(data, 1, 3)

单独查看部分光伏发电功率数据,发现有较强的规律性。

1.2 导入库文件

import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import tensorflow as tffrom tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU, Dropout, Dense
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from itertools import cycleimport joblib
import datetimeplt.rcParams['font.sans-serif'] = ['SimHei']     # 显示中文
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams.update({'font.size':18})

1.3 数据集处理

首先检查数据的缺失值情况,通过统计数据可以看到,存在少量缺失值。

# 缺失值统计
data.isnull().sum()

时间、场站名称无效信息可以删除,辐照强度(Wh/㎡)、 环境温度(℃)、全场功率(kW)存在少量缺失值,用前后项值进行填充(这里缺失值填充可根据自己的方法处理)。 

# 特征删除和缺失值填充
data.drop(['时间','场站名称'], axis=1, inplace=True)
data = data.fillna(method='ffill')
# 调整列位置
data = data[[' 辐照强度(Wh/㎡)', ' 环境温度(℃)', ' 全场功率(kW)']]

然后将数据转化为数值类型便于后续处理。

dataf = data.values

1.4 训练数据构造

计划预测后1/4天的数据96个,将要预测的数据保留(也就是未来未知的数据),单独提取出前面训练的数据(也就是历史数据),并对数据集进行滚动划分,特征和标签分开划分。

#构造数据集
def create_dataset(datasetx,datasety,timesteps=36,predict_size=6):datax=[]#构造xdatay=[]#构造yfor each in range(len(datasetx)-timesteps - predict_steps):x = datasetx[each:each+timesteps,0:6]y = datasety[each+timesteps:each+timesteps+predict_steps,0]datax.append(x)datay.append(y)return datax, datay#np.array(datax),np.array(datay)

接着设置预测的时间步、每次预测的步长、最后总的预测步长,参数可以根据需要更改。跟前面文章不同的是,这里没有滚动预测,因为没有持续的特征传入,在实际运用有特征传入时可以滚动预测。

timesteps = 96*5 #构造x,为96*5个数据,表示每次用前5/4天的数据作为一段
predict_steps = 96 #构造y,为96个数据,表示用后1/4的数据作为一段
length = 96 #预测多步,预测96个数据据

接着对数据进行归一化处理,特征和标签分开划分,并分开进行归一化处理。

# 特征和标签分开划分
datafx = dataf[:,:-1]
datafy = dataf[:,-1].reshape(dataf.shape[0],1)# 分开进行归一化处理
scaler1 = MinMaxScaler(feature_range=(0,1))
scaler2 = MinMaxScaler(feature_range=(0,1))
datafx = scaler1.fit_transform(datafx)
datafy = scaler2.fit_transform(datafy)

最后对这行数据集进行划分,并将数据变换为满足模型格式要求的数据。

trainx, trainy = create_dataset(datafx[:-predict_steps*6,:],datafy[:-predict_steps*6],timesteps, predict_steps)
trainx = np.array(trainx)
trainy = np.array(trainy)

2 模型训练与预测

2.1 模型训练

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行20个epochs的训练,每个batch包含128个样本。此时input_shape划分数据集时每个x的形状。(建议使用GPU进行训练,因为本人电脑性能有限,建议增加epochs值)

# Define the GPU device
physical_devices = tf.config.list_physical_devices('GPU')
if physical_devices:tf.config.experimental.set_memory_growth(physical_devices[0], True)# GRU training
start_time = datetime.datetime.now()
model = Sequential()
model.add(GRU(128, input_shape=(timesteps, trainx.shape[2]), return_sequences=True))
model.add(Dropout(0.5))
model.add(GRU(128, return_sequences=True))
model.add(GRU(64, return_sequences=False))
model.add(Dense(predict_steps))
model.compile(loss="mean_squared_error", optimizer="adam")
model.fit(trainx, trainy, epochs=20, batch_size=128)
end_time = datetime.datetime.now()
running_time = end_time - start_time# 保存模型
model.save('gru_model.h5')

2.2 模型多步预测

下面介绍文章中最重要,也是真正没有未来特征的情况下预测未来标签的方法。整体的思路也就是,前面通过前96*5个数据训练后面的96个未来数据,预测时取出前96*5个数据预测未来的96个未来数据。这里与单变量预测不同,没有进行滚动预测,因为单变量预测的结果可以作为历史数据进行滚动,这里多变量只产生了预测值,并没有预测标签,不能进行滚动预测,在实际有数据源源不断时可以采用滚动预测。(里面的数据可以根据需求进行更改)

​首先提取需要带入模型的数据,也就是预测前的96*5行特征和后96个标签。

y_true = dataf[-96:,-1]
predictx = datafx[-96*6:-96]

然后加载训练好的模型:

# 加载模型
from tensorflow.keras.models import load_model
model = load_model('gru_model.h5')

2.3 预测可视化

预测并计算误差,并进行可视化,将这些步骤封装为函数。

def predict_and_plot(x, y_true, model, scaler, timesteps):# 变换输入x格式,适应LSTM模型predict_x = np.reshape(x, (1, timesteps, 2))  # 预测predict_y = model.predict(predict_x)predict_y = scaler.inverse_transform(predict_y)y_predict = []y_predict.extend(predict_y[0])# 计算误差train_score = np.sqrt(mean_squared_error(y_true, y_predict))print("train score RMSE: %.2f" % train_score)# 预测结果可视化cycol = cycle('bgrcmk')plt.figure(dpi=100, figsize=(14, 5))plt.plot(y_true, c=next(cycol), markevery=5)plt.plot(y_predict, c=next(cycol), markevery=5)plt.legend(['y_true', 'y_predict'])plt.xlabel('时间')plt.ylabel('功率(kW)')plt.show()return y_predict

最后运行结果,发现预测的效果大致捕捉了趋势,预测值存在一定程度的波动,也出现功率值小于0的情况,可以自行处理。

y_predict = predict_and_plot(predictx1, y_true1, model, scaler2, timesteps)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/211673.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

动态规划学习——最长回文子序列,让字符串变成回文串的最小插入次数

一&#xff0c;最长回文串 1.题目 给你一个字符串 s &#xff0c;找出其中最长的回文子序列&#xff0c;并返回该序列的长度。 子序列定义为&#xff1a;不改变剩余字符顺序的情况下&#xff0c;删除某些字符或者不删除任何字符形成的一个序列。 示例 1&#xff1a; 输入&…

搞程序权益系统v1.1

继1.0出来后我就把antdui换成elem 新增号卡功能现在只支持对接号氪系统 大家问我这个程序到底有什么用&#xff0c;我这边已经在写和WordPress对接文件&#xff0c;到时候在WordPress网站打开该程序就可以把订单同步到你的程序里面去&#xff0c;当然自己有集成能力也可以到小…

R语言学习

Part1阶段1&#xff1a;入门基础 1安装R和RStudio&#xff1a; 下载并安装R&#xff1a;https://cran.r-project.org/ 下载并安装RStudio&#xff1a;https://www.rstudio.com/products/rstudio/download/ 2Hello World&#xff1a; 学习如何在R中输出"Hello, World!"…

【智能家居】一、工厂模式实现继电器灯控制

用户手册对应的I/O 工厂模式实现继电器灯控制 代码段 controlDevice.h&#xff08;设备设备&#xff09;main.c&#xff08;主函数&#xff09;bathroomLight.c&#xff08;浴室灯&#xff09;bedroomLight.c&#xff08;卧室灯&#xff09;restaurantLight.c&#xff08;餐厅…

mac电池最大充电限制工具 AlDente Pro中文 for Mac

Pro 版特有功能 热保护&#xff1a;在电池温度较高时为电池充电会导致电池老化更快。启用热保护后&#xff0c;当电池温度过高时&#xff0c;充电将自动停止。 航行模式&#xff1a;通常情况下&#xff0c;即使激活了最大电池充电&#xff0c;您的 MacBooks 电池也会始终稍微充…

Guava中的函数式编程

第1章&#xff1a;引言 大家好&#xff01;今天小黑要和咱们聊聊&#xff0c;在Java中使用Guava来进行函数式编程。首先&#xff0c;让我们来聊聊什么是函数式编程。简单来说&#xff0c;函数式编程是一种编程范式&#xff0c;它将计算视为函数的评估&#xff0c;避免使用程序…

ChatGPT能帮助--掌握各种AI绘图工具,随意生成各类型性图像

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

西南科技大学C++程序设计实验六( 继承与派生一)

一、实验目的 1. 理解不同继承属性对派生类访问基类成员的区别 2. 掌握单继承程序编写 二、实验任务 1、调试下列程序,并在对程序进行修改后再调试,指出调试中的出错原因(该题中A为基类,B为派生类,B以public方式继承A) 重点:理解不同继承方式数据的访问权限,派生类…

【力扣】——可获得的最大点数(滑动窗口)

几张卡牌 排成一行&#xff0c;每张卡牌都有一个对应的点数。点数由整数数组 cardPoints 给出。 每次行动&#xff0c;你可以从行的开头或者末尾拿一张卡牌&#xff0c;最终你必须正好拿 k 张卡牌。 你的点数就是你拿到手中的所有卡牌的点数之和。 给你一个整数数组 cardPoi…

HarmonyOS4.0从零开始的开发教程04 初识ArkTS开发语言(下)

HarmonyOS&#xff08;二&#xff09; 初识ArkTS开发语言&#xff08;下&#xff09;之TypeScript入门 声明式UI基本概念 应用界面是由一个个页面组成&#xff0c;ArkTS是由ArkUI框架提供&#xff0c;用于以声明式开发范式开发界面的语言。 声明式UI构建页面的过程&#xff…

gitLab 和Idea分支合并

以下二选1即可完成分支合并建议第一种简单有效 Idea合并方式 切换到被合并的分支&#xff0c;如我想把0701的内容合并到dev&#xff0c;切换到dev分支&#xff0c;然后再点击merge然后选择要合并的分支&#xff0c;即可,此时git上的代码没有更新只是把代码合到本地需要pull才…

Kafka使用指南

Kafka简介架构设计Kafka的架构设计关键概念Kafka的架构设计关键机制 Partition介绍Partition工作机制 应用场景ACK机制介绍ACK机制原理ACK机制对性能的影响ACK控制粒度Kafka分区数对集群性能影响调整分区优化集群性能拓展Kafka数据全局有序 Kafka简介 Kafka是由Apache软件基金…

【数据结构】动态规划(Dynamic Programming)

一.动态规划&#xff08;DP&#xff09;的定义&#xff1a; 求解决策过程&#xff08;decision process&#xff09;最优化的数学方法。 将多阶段决策过程转化为一系列单阶段问题&#xff0c;利用各阶段之间的关系&#xff0c;逐个求解。 二.动态规划的基本思想&#xff1a; …

【CentOS8】使用 Tomcat 部署 Java Web 项目(使用 sdkman)

文章目录 配置 Tomcat将 Tomcat 启动命令设置为 Linux 自定义服务给 Tomcat 设置管理员账号密码IDEA 打包 Java web 项目 我是使用 sdkman 下载的 jdk 和 tomcat&#xff0c;所以接下来的部署配置都是在 sdkman 构建的环境的。想要知道如何下载 sdkman 可以看看这篇文章 —…

【开源】基于Vue+SpringBoot的用户画像活动推荐系统

项目编号&#xff1a; S 061 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S061&#xff0c;文末获取源码。} 项目编号&#xff1a;S061&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 兴趣标签模块2.3 活…

Docker-多容器应用

一、概述 到目前为止&#xff0c;你一直在使用单个容器应用。但是&#xff0c;现在您将 MySQL 添加到 应用程序堆栈。经常会出现以下问题 - “MySQL将在哪里运行&#xff1f;将其安装在同一个 容器还是单独运行&#xff1f;一般来说&#xff0c;每个容器都应该做一件事&#x…

Vite4、Vue3、Axios 针对请求模块化封装搭配自动化导入(简单易用)

针对请求模块化封装搭配自动化导入&#xff08;简单易用&#xff09; 目标目录目标代码前提步入正题src / utils / index.jssrc /api / index.jssrc /api / request.jssrc /api / service.jssrc /api / utils.jssrc /api / modules / demo.js 自动化配置vite.config.jseslint 校…

AWS 日志分析工具

当您的网络资源托管在 AWS 中时&#xff0c;需要定期监控您的 AWS CloudTrail 日志、Amazon S3 服务器日志和 AWS ELB 日志等云日志&#xff0c;以降低任何潜在的安全风险、识别严重错误并确保满足所有合规性法规。 什么是 Amazon S3 Amazon Simple Storage Service&#xff…

德迅猎鹰(云蜜罐)有什么用

蜜罐&#xff08;Honeypot&#xff09;是一种安全技术&#xff0c;用于吸引和欺骗攻击者&#xff0c;以便收集关于攻击行为的信息和情报。它模拟了一个脆弱的系统、服务或网络资源&#xff0c;看起来对攻击者具有吸引力&#xff0c;但实际上是为了引诱攻击者暴露其攻击手法和意…

Flink Flink数据写入Kafka

一、环境准备 flink 1.14写入Kafka&#xff0c;首先在pom.xml文件中导入相关依赖 <properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><flink.version>1.14.6</flink.version><spark.version>2.4.3</spa…