智能优化算法应用:基于北方苍鹰算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于北方苍鹰算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于北方苍鹰算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.北方苍鹰算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用北方苍鹰算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.北方苍鹰算法

北方苍鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/124539198
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

北方苍鹰算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明北方苍鹰算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/212315.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python技术栈之单元测试中mock的使用

什么是mock? mock测试就是在测试过程中,对于某些不容易构造或者不容易获取的对象,用一个虚拟的对象来创建以便测试的测试方法。 mock的作用 特别是开发过程中上下游未完成的工序导致当前无法测试,需要虚拟某些特定对象以便测试…

[node] Node.js的Web 模块

[node] Node.js的Web 模块 什么是 Web 服务器?Web的应用架构http使用方式使用 Node 创建 Web 服务器使用 Node 创建 Web 客户端 什么是 Web 服务器? Web服务器一般指网站服务器,是指驻留于因特网上某种类型计算机的程序,Web服务器…

使用WalletConnect Web3Modal v3 链接钱包基础教程

我使用的是vueethers 官方文档:WalletConnect 1.安装 yarn add web3modal/ethers ethers 或者 npm install web3modal/ethers ethers2.引用 新建一个js文件,在main.js中引入,初始化配置sdk import {createWeb3Modal,defaultConfig, } from…

Vue3 Element-Plus 一站式生成动态表单:简化前端开发流程

文章目录 1. 引言2. Vue3 和 Element-Plus 简介2.1 Vue32.2 Element-Plus 3. 动态表单的需求与挑战4. Vue3 和 Element-Plus 动态表单的优势4.1 Vue3的组合式API4.2 Element-Plus的表单组件 5. 一站式生成动态表单的实现5.1 准备工作5.2 创建动态表单组件5.3 使用动态表单组件 …

uniapp横向滚动示例

目录 插件市场案例最后 插件市场 地址 案例 地址 最后 感觉文章好的话记得点个心心和关注和收藏,有错的地方麻烦指正一下,如果需要转载,请标明出处,多谢!!!

读书笔记-《数据结构与算法》-摘要4[插入排序]

插入排序 核心:通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描(对于单向链表则只能从前往后遍历),找到相应位置并插入。实现上通常使用in-place排序(需用到O(1)的额外空间) 从第一个元素开始,该元素可…

Science | 张锋实验室:聚类算法揭示188种新型CRISPR系统

微生物序列数据库包含大量有关酶和其他可用于生物技术的分子的信息。但近年来,这些数据库已经变得非常庞大,以至于很难有效地搜索到感兴趣的酶。 2023年11月23日,博德研究所张锋及美国国立卫生研究院Eugene V. Koonin共同通讯在Science 在线…

【原神游戏开发日志1】缘起

【原神游戏开发日志1】缘起 版权声明 本文为“优梦创客”原创文章,您可以自由转载,但必须加入完整的版权声明 文章内容不得删减、修改、演绎 相关学习资源见文末 大家好,最近看到原神在TGA上频频获奖,作为一个14年经验的游戏开…

C# Solidworks二次开发:三种获取SW设计结构树的方法-第一讲

今天要讲的方法是如何在Solidworks中获取左侧设计结构上的节点,获取节点的方法我所知道的有三种。 这三种方法满足我在使用过程的多种需求,下面先开始介绍第一个方法: 方法的API如下所示:GetComponents Method (IAssemblyDoc) 这…

基于单片机的电子密码锁设计

1.设计任务 利用AT89C51单片机为核心控制元件,设计一个简易的电子密码锁,可设置四位密码,输入错误三次,报警灯亮起(红灯亮起),输入正确,绿灯闪烁三次。可通过LCD显示屏查看密码&…

Canvas鼠标画线

鼠标按下开始画线,鼠标移动根据鼠标的轨迹去画,鼠标抬起停止画线 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0">…

Leetcode刷题笔记题解(C++):LCR 121. 寻找目标值 - 二维数组

思路&#xff1a;从左小角或者右上角开始遍历&#xff0c;假设右上角开始遍历&#xff0c;如果当前值大于目标值则列-1&#xff1b;如果当前值小于目标值则行1&#xff0c;以此遍历来查找目标值&#xff1b;注意col和row的选取 class Solution { public:bool findTargetIn2DPl…

选择黑盒测试用例设计方法的综合策略方案总结

前言 具体的黑盒测试用例设计方法包括等价类划分法、边界值分析法、错误推测法、因果图法、判定表驱动法、正交试验设计法、功能图法、场景法等。这些方法都是比较实用的&#xff0c;但在具体工作中要采用什么方法&#xff0c;需要针对项目的特点加以适当的选择。在实际高水平…

在 Windows 桌面的redis中远程连接到 VMware 中运行的 Linux 上的 Redis

先修改一下docker容器中的redis(一会连上之后看效果) 我使用的是VMware的虚拟机 选择的网络设置为桥接模式 查到虚拟机独立的ip是如下 允许 Linux 虚拟机上的 Redis 监听外部连接&#xff1a; 打开 Linux 虚拟机上的 Redis 配置文件。在大多数系统上&#xff0c;配置文件位于…

java设计模式学习之【桥接模式】

文章目录 引言桥接模式简介定义与用途&#xff1a;实现方式 使用场景优势与劣势桥接模式在Spring中的应用绘图示例代码地址 引言 想象你正在开发一个图形界面应用程序&#xff0c;需要支持多种不同的窗口操作系统。如果每个系统都需要写一套代码&#xff0c;那将是多么繁琐&am…

Pytorch进阶教学——训练一个图像分类模型(GPU)

目录 1、前言 2、数据集介绍 3、获取数据 4、创建网络 5、训练模型 6、测试模型 6.1、测试整个模型准确率 6.2、测试单张图片 1、前言 编写一个可以分类蚂蚁和蜜蜂图片的模型&#xff0c;使用数据集对卷积神经网络进行训练。训练后的模型可以对蚂蚁或蜜蜂的图片进行…

添加cpack install功能

修改最外层的CMakeLists.txt, 添加几行代码&#xff1a; # If GNUInstallDirs is not included, CMAKE_INSTALL_BINDIR is empty. include(GNUInstallDirs)# it must go before project in order to work set(CMAKE_INSTALL_PREFIX "${PROJECT_SOURCE_DIR}" CACHE …

Android平板还能编程?Ubuntu本地安装code-server远程编程写代码

文章目录 1.ubuntu本地安装code-server2. 安装cpolar内网穿透3. 创建隧道映射本地端口4. 安卓平板测试访问5.固定域名公网地址6.结语 1.ubuntu本地安装code-server 准备一台虚拟机,Ubuntu或者centos都可以&#xff0c;这里以VMwhere ubuntu系统为例 下载code server服务,浏览器…