好莱坞明星识别

 一、前期工作


1. 设置GPU

from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")gpus


如果使用的是CPU可以忽略这步



2. 导入数据

data_dir = "./46-data/"data_dir = pathlib.Path(data_dir)




3. 查看数据

 

image_count = len(list(data_dir.glob('*/*/*.jpg')))print("图片总数为:",image_count)


 

图片总数为: 578
roses = list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

YAIRI

output_11_0.png



二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中
●tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型。


测试集与验证集的关系:

1验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
2但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
3因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集

batch_size = 32
img_height = 224
img_width = 224



如果准备尝试 categorical_crossentropy损失函数,下面的代码遇到变动哈,变动细节将在下一周博客内公布。
 

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory("./46-data/train/",seed=123,image_size=(img_height, img_width),batch_size=batch_size)

Found 502 files belonging to 2 classes.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory("./46-data/test/",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 76 files belonging to 2 classes.




我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
 

class_names = train_ds.class_names
print(class_names)
['adidas', 'nike']



2. 可视化数据

 

plt.figure(figsize=(20, 10))for images, labels in train_ds.take(1):for i in range(20):ax = plt.subplot(5, 10, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

output_22_0.png



3. 再次检查数据

 

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(32, 224, 224, 3)
(32,)


●Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
●Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

●shuffle() :打乱数据,关于此函数的详细介绍可以参考:数据集shuffle方法中buffer_size的理解 - 知乎
●prefetch() :预取数据,加速运行

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:

image.png


使用prefetch()可显著减少空闲时间:

image.png


●cache() :将数据集缓存到内存当中,加速运行

AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)



三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入的形状是 (224, 224, 3)即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape。

网络结构图(可单击放大查看):

image.png

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""model = models.Sequential([layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样layers.Dropout(0.3),  layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3layers.Dropout(0.3),  layers.Flatten(),                       # Flatten层,连接卷积层与全连接层layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取layers.Dense(len(class_names))               # 输出层,输出预期结果
])model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
rescaling (Rescaling)        (None, 224, 224, 3)       0         
_________________________________________________________________
conv2d (Conv2D)              (None, 222, 222, 16)      448       
_________________________________________________________________
average_pooling2d (AveragePo (None, 111, 111, 16)      0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 109, 109, 32)      4640      
_________________________________________________________________
average_pooling2d_1 (Average (None, 54, 54, 32)        0         
_________________________________________________________________
dropout (Dropout)            (None, 54, 54, 32)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 52, 52, 64)        18496     
_________________________________________________________________
dropout_1 (Dropout)          (None, 52, 52, 64)        0         
_________________________________________________________________
flatten (Flatten)            (None, 173056)            0         
_________________________________________________________________
dense (Dense)                (None, 128)               22151296  
_________________________________________________________________
dense_1 (Dense)              (None, 2)                 258       
=================================================================
Total params: 22,175,138
Trainable params: 22,175,138
Non-trainable params: 0
_________________________________________________________________




四、训练模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

●损失函数(loss):用于衡量模型在训练期间的准确率。
●优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
●指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

1.设置动态学习率

📮 ExponentialDecay函数:
tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。

🔎 主要参数:
●initial_learning_rate(初始学习率):初始学习率大小。
●decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
●decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
●staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。

# 设置初始学习率
initial_learning_rate = 0.1lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=10,      # 敲黑板!!!这里是指 steps,不是指epochsdecay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lrstaircase=True)# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)model.compile(optimizer=optimizer,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])



注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)

学习率大与学习率小的优缺点分析:

学习率大

● 优点:
○1、加快学习速率。
○2、有助于跳出局部最优值。
● 缺点:
○1、导致模型训练不收敛。
○2、单单使用大学习率容易导致模型不精确。

学习率小

● 优点:
○1、有助于模型收敛、模型细化。
○2、提高模型精度。
● 缺点:
○1、很难跳出局部最优值。
○2、收敛缓慢。

2.早停与保存最佳模型参数

EarlyStopping()参数说明:

●monitor: 被监测的数据。
●min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
●patience: 没有进步的训练轮数,在这之后训练就会被停止。
●verbose: 详细信息模式。
●mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
●baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
●estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStoppingepochs = 50# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',monitor='val_accuracy',verbose=1,save_best_only=True,save_weights_only=True)# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', min_delta=0.001,patience=20, verbose=1)



3. 模型训练
 

history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,callbacks=[checkpointer, earlystopper])
Epoch 1/50
16/16 [==============================] - 4s 31ms/step - loss: 3.5439 - accuracy: 0.4721 - val_loss: 0.6931 - val_accuracy: 0.5789Epoch 00001: val_accuracy improved from -inf to 0.57895, saving model to best_model.h5
Epoch 2/50
16/16 [==============================] - 0s 12ms/step - loss: 0.6929 - accuracy: 0.5279 - val_loss: 0.6891 - val_accuracy: 0.6447......Epoch 00040: val_accuracy did not improve from 0.89474
Epoch 41/50
16/16 [==============================] - 0s 12ms/step - loss: 0.0931 - accuracy: 0.9841 - val_loss: 0.3837 - val_accuracy: 0.8816Epoch 00041: val_accuracy did not improve from 0.89474
Epoch 42/50
16/16 [==============================] - 0s 12ms/step - loss: 0.0871 - accuracy: 0.9801 - val_loss: 0.3834 - val_accuracy: 0.8816Epoch 00042: val_accuracy did not improve from 0.89474
Epoch 00042: early stopping



五、模型评估

1. Loss与Accuracy图
 

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(len(loss))plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

output_51_0.png


2. 指定图片进行预测
 

from PIL import Image
import numpy as np# img = Image.open("./45-data/Monkeypox/M06_01_04.jpg")  #这里选择你需要预测的图片
img = Image.open("./46-data/test/nike/1.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])img_array = tf.expand_dims(image, 0) #/255.0  # 记得做归一化处理(与训练集处理方式保持一致)predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

预测结果为: nike

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/212998.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

clickhouse的向量化执行

背景 clickhouse快的很大一部分原因来源于数据的向量化执行,本文就来看一下向量化执行和正常标量执行的区别 SIMD的向量化执行 从上图可知,clickhouse通过SIMD指令可以做到一个cpu周期操作两个向量的运算操作,比起普通的cpu指令效率提高了N…

Linux库之动态库静态库

一、什么是库(Library) 二、库的分类 三、静态库、动态库优缺点 四、静态库的制作和使用 五、动态库的制作和使用 SO-NAME–解决主版本号之间的兼容问题 基于符号的版本机制 共享库系统路径 共享库的查找过程 有用的环境变量 gcc 编译器常用选项 Linux共…

八个适合女大学生做的赚钱小副业

大学的生活可以说是多姿多彩,既有沉浸在课堂知识中的学习,也有课余时间可以自由支配的自我发展。然而,作为一名女大学生,除了追求优异的学业表现,是否还有其他更加多元化且有意义的方式来充实自己呢? 当然&…

vue el-select多选封装及使用

使用了Element UI库中的el-select和el-option组件来构建多选下拉框。同时&#xff0c;也包含了一个el-input组件用于过滤搜索选择项&#xff0c;以及el-checkbox-group和el-checkbox组件用于显示多选项。 创建组件index.vue (src/common-ui/selectMultiple/index.vue) <tem…

linux云服务器开启防火墙注意事件

重要的事情先说三遍: linux云服务器开启防火墙要先获取到云服务器的管理界面控制权!! linux云服务器开启防火墙要先获取到云服务器的管理界面控制权!! linux云服务器开启防火墙要先获取到云服务器的管理界面控制权!! 也就是能打开这个页面: 为什么这么说呢?如果你…

4.Java程序设计-基于springboot得在线考试系统

编程技术交流、源码分享、模板分享、网课分享 企鹅&#x1f427;裙&#xff1a;772162324 摘要&#xff1a; 本文设计并实现了一款基于Spring Boot框架的在线考试系统小程序。随着远程学习和在线教育的普及&#xff0c;对于灵活、便捷的在线考试系统的需求逐渐增加。该小程序…

数字图像处理(实践篇) 十六 基于分水岭算法的图像分割

目录 一 分水岭算法 二 利用OpenCV实现分水岭算法的过程 三 实践 一 分水岭算法 基于任何灰度图像都可以视为地形表面&#xff0c;其中高强度表示山峰和山丘&#xff0c;而低强度表示山谷。首先&#xff0c;开始用不同颜色的水&#xff08;标签&#xff09;填充每个孤立的山…

dell服务器安装PERCCLI

因在linux 系统中无法查看系统磁盘的raid级别&#xff0c;也无法得知raid状态&#xff0c;需要安装额外的包来监控&#xff0c;因是dell服务器&#xff0c;就在dell网站中下载并安装 1、下载链接&#xff1a;驱动程序和下载 | Dell 中国https://www.dell.com/support/home/zh-…

Ubuntu 安装 MySQL8 配置、授权、备份、远程连接

目录 0100 系统环境0200 下载0300 安装0400 服务管理0401 关闭、启动、重启服务0402 查看服务状态 0500 查看配置文件0600 账号管理0601 添加账号0602 删除账号0603 修改密码0604 忘记root密码 0700 自动备份0800 远程访问 0100 系统环境 [rootlocalhost ~]# cat /proc/versio…

github首次将文件合到远端分支,发现名字不是master,而是main

其中&#xff0c;暂存区和本地仓库的信息都存储在.git目录中 在自己的github上实践 1、刚开始&#xff0c;git clone gitgithub.com:lingze8678/my_github.git到本地 2、在克隆后的代码中加入一个pdf文件 3、在git bash中操作&#xff08;当项目中有文件更改和删除&#xff…

DAPP开发【02】Remix使用

系列文章目录 系列文章在DAPP开发专栏 文章目录 系列文章目录使用部署测试网上本地项目连接remix本地项目连接remix 使用 创建一个新的工作空间 部署测试网上 利用metaMask连接测试网络 添加成功&#xff0c;添加时需要签名 即可进行编译 即可部署 本地项目连接remix 方…

Python中读写(解析)JSON文件的深入探究

目录 一、引言 二、如何读取JSON文件 三、如何写入JSON文件 四、如何解析JSON字符串 五、错误处理和异常处理 六、使用第三方库提高效率 七、总结 一、引言 在Python中&#xff0c;我们经常使用JSON&#xff08;JavaScript Object Notation&#xff09;格式来存储和传输…

在pom.xml中添加maven依赖,但是类里面import导入的时候报错

问题&#xff1a; Error:(27, 8) java: 类TestKuDo是公共的, 应在名为 TestKuDo.java 的文件中声明 Error:(7, 23) java: 程序包org.apache.kudu不存在 Error:(8, 23) java: 程序包org.apache.kudu不存在 Error:(9, 23) java: 程序包org.apache.kudu不存在 Error:(10, 30) jav…

一.初始typescript

什么是ts 首先我们要确认typescript是一个语言&#xff0c;是等同于JavaScript层级得&#xff0c;并不是一些人认为得是JavaScript得类型规范工具或者插件。 ts与js的差异 从type script这个名字就可以看出&#xff0c;ts其实是JavaScript的一个类型化超集&#xff0c;它增…

网安领域含金量最高的证书有哪些?看这1篇就足够了!

文章目录 一、前言二、CISP三、CISAW四、NISP五、为什么很多人考不下来 一、前言 现在想找网络安全之类的工作&#xff0c;光有技术是不够的&#xff0c;还得有东西证明自己&#xff0c;网安三大敲门砖&#xff1a;CTF、漏洞证明和专业证书。 对于CTF的话只是少数人能参加的&…

记一次xss通杀挖掘历程

前言 前端时间&#xff0c;要开放一个端口&#xff0c;让我进行一次安全检测&#xff0c;发现的一个漏洞。 经过 访问之后发现是类似一个目录索引的端口。(这里上厚码了哈) 错误案例测试 乱输内容asdasffda之后看了一眼Burp的抓包&#xff0c;抓到的内容是可以发现这是一个…

智慧安防三大信息技术:云计算、大数据及人工智能在视频监控EasyCVR中的应用

说到三大信息技术大家都很清楚&#xff0c;指的是云计算、大数据和人工智能&#xff0c;在人工智能&#xff08;AI&#xff09;快速发展的当下&#xff0c;例如常见的大数据分析、人工智能芯片生产的智能机器人等等&#xff0c;在工作、生活、教育、金融、科技、工业、农业、娱…

使用 mtcnn 和 facenet 进行人脸识别

一、前言 人脸识别目前有比较多的应用了&#xff0c;比如门禁系统&#xff0c;手机的人脸解锁等等&#xff0c;今天&#xff0c;我们也来实现一个简单的人脸识别。 二、思维导图 三、详细步骤 3.1 准备 3.1.1 facenet 权重文件下载 下载地址&#xff1a;https://drive.goo…

luceda ipkiss教程 42:获取版图所有的电端口

通过判断版图端口的domain.name&#xff0c;可以知道端口是电端口还是光端口&#xff1a; 如&#xff1a; 可以通过如下代码获取两个电端口&#xff08;anode和cathode&#xff09;的信息&#xff1a; from si_fab import all as pdkdef get_electrical_ports(layout):ports …

题目:挑选子串(蓝桥OJ 1621)

题目描述&#xff1a; 解题思路&#xff1a; 采用双指针的快慢指针。与蓝桥OJ1372类似。 图解 题解&#xff1a; #include <bits/stdc.h> using namespace std;const int N 1e5 9; int a[N];int main() {ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);int n, m…