数学建模-数据新动能驱动中国经济增长的统计研究-基于数字产业化和产业数字化的经济贡献测度

数据新动能驱动中国经济增长的统计研究-基于数字产业化和产业数字化的经济贡献测度

整体求解过程概述(摘要)

  伴随着数据要素化进程的不断加深,对于数据如何作用于经济发展,数据与其他要素结合产生的动能应该如何测度的研究愈发重要。本文将数据新动能分解为“数字产业化”与“产业数字化”两个角度来对其进行统计测度,以更好地去理解数据是如何赋能与其他要素,助力我国数字经济高质量发展。
  本文首先进行了文本分析,利用爬虫从知网、百度资讯上抓取相关文献,经过预处理、清洗、分词后,从词云图获取到文献聚焦的热点。在对分词后的建立“文档-词项”矩阵与 TI-IDF,并根据 TI-IDF 的结果建立 lda 主题模型,最终得到“数据要素”“技术创新”“宏观政策”“转型升级”“交易模型”“数据监管”六大主题,为后续问题的探讨明确了方向。
  之后我们选择依据经济原理,通过综合评价来构建与“数字产业化”与“产业数字化”相对应的指标体系并使用柯布-道格拉斯生产函数,对“数字产业化”进行投入产出分析,通过 bootstrap 方法拟合方程计算得出各种生产要素在数据产业中的贡献率,并计算出相对应的“产业数字化”生产函数,通过数学变换分析得出了相应的数据要素对于劳动力,资本,科技的作用,来使得我们以更好地理解、分析“数字产业化”和“产业数字化”共同作用下的经济合力——数据新动能。

问题分析

  本次建模所要研究的主要问题,就是探索测度数据赋能经济而产生新动能的方式,希望能够寻找到部分具有较强代表性,较高准确性的测度指标,找到一种合适的方式,来对数据要素这一新兴生产要素在对经济赋能过程中所产生的价值进行测度,助力数字产品与服务市场规范化,激发数据产业新动能,更好的发挥数据驱动新消费的作用,推动我国数字经济新发展。

  本文接下来将进行数据新动能驱动经济增长的机理探索,基于文本挖掘的方法来对数据新动能进行解析,并对数据新动能及相关概念界定,分析数据新动能、“数字产业化”和“产业数字化”的关系与相互作用。之后我们将进行数据要素赋能中国经济增长的统计模型构建,并将其分为“数字产业化”评价指标体系和“产业数字化”评价指标体系进行设计。
  基于这两个评价指标体系,我们将构建“数字产业化”和“产业数字化”的生产模型进行分析,并利用这一模型来进行数据要素赋能中国经济增长的测度分析,最后我们将根据我们研究的结果得出相关结论,并提出相关建议,助力数字化要素发展,让数据新动能使我国经济发展迸发出新的活力。

模型的建立与求解

  为了更好的了解和界定数据新动能,本文进行了文本分析,利用 Python 爬虫从知网、百度资讯上抓取相关文献,经过预处理后,共计获得文章 622 篇。在对文本进行清洗、分词后,按照词频制作词云图,从词云图获取到文献聚焦的热点。在对分词后的建立“文档-词项”矩阵与 TI-IDF,并根据 TI-IDF 的结果建立lda 主题模型,以便从中获取主题,为后续问题的研究提供思路。通过文本分析后我们发现数据新动能由于各方面存在的很大的宽泛性和不确定性,直接测度没有标准,测度难度较大,所以我们选择使用综合评价体系来进行指标设计,从侧面进行测度。通过数据新动能作用方式将其划分为“数字产业化”“产业数字化”两部分分别进行测度,并将其拟合成生产函数的形式,利用数学变换来进行数据赋能的测度。
  在拟合生产函数的过程中,由于数据量过少,部分指标统计近些年来才开始统计,我们使用了插值法来进行空值补全。为了解决模型拟合中由于数据量过少,大部分变量不显著的问题,我们通过 R 语言使用了对样本及其分布要求较低的bootstrap 方法来近似扩大样本的过程,进行 1500 次重抽样来进行方程参数的估计。最终拟合出较为准确的回归方程,并进行下一步的灰色预测来对指标体系中的指标进行进一步预测。
  最后,我们根据上述结果进行分析并提出了相关的建议,希望能助力于我国数字经济的发展,使我国经济迸发出更多的数据新动能。
在这里插入图片描述

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

(代码和文档not free)

import os
import numpy as np
import numpy.linalg as nplg
import scipy.optimize as spopt
import matplotlib.pyplot as plt
import scipy.interpolate as spidef zje_dp_objective(x,alpha, beta, delta,kgrid,pp, pp2, pp3):c = np.power(kgrid, alpha) + (1 - delta) * kgrid - xy = - np.sum(np.log(c) + beta * pp(x))return ydef zje_dp_objective_jac(x,alpha, beta, delta,kgrid,pp, pp2, pp3):c = np.power(kgrid, alpha) + (1 - delta) * kgrid - xyp = np.power(c, -1) - beta * pp2(x)return ypdef zje_dp_objective_hes(x,alpha, beta, delta,kgrid,pp, pp2, pp3):c = np.power(kgrid, alpha) + (1 - delta) * kgrid - xydp = np.diag(np.power(c, -2) - beta * pp3(x))return ydpdef zje_dp_pchip(alpha, beta, delta,m_kgrid, m_kgrid2,iternum,figurepath=None):'''dynamic programming with pchip'''kbar = np.power(alpha * beta / (1 - beta * (1 - delta)), 1 / (1 - alpha))kl = 0.75 * kbarkh = 1.25 * kbarkgrid = np.linspace(kl, kh, m_kgrid)v2 = np.log(kgrid)optk2 = kgridlb = np.ones(m_kgrid) * kgrid[0]ub = np.power(kgrid, alpha) + (1 - delta) * kgrid - 1e-06for kkk in range(iternum):v = v2optk = optk2pp = spi.pchip(kgrid, v)pp2 = pp.derivative(1)pp3 = pp.derivative(2)x0 = optkres = spopt.minimize(zje_dp_objective, x0,jac=zje_dp_objective_jac,hess=zje_dp_objective_hes,method="trust-exact",bounds=(lb, ub),args=(alpha, beta, delta, kgrid, pp, pp2, pp3,))optk2 = res.xoptc = np.power(kgrid, alpha) + (1 - delta) * kgrid - optk2v2 = np.log(optc) + beta * pp(optk2)vdiff = nplg.norm(v2 - v)kdiff = nplg.norm(optk2 - optk)if (vdiff < 1e-08 and kdiff < 1e-08):breakkspace = np.linspace(kgrid[0], kgrid[m_kgrid - 1], m_kgrid2)pp = spi.pchip(kgrid, optk2)kp = pp(kspace)c = np.power(kspace, alpha) + (1 - delta) * kspace - kpkpp = pp(kp)cp = np.power(kp, alpha) + (1 - delta) * kp - kppee = 1 - beta * np.power(cp, -1) * (alpha * np.power(kp,alpha - 1) + 1 - delta) / np.power(c, -1)fig = plt.figure(figsize=(16, 9))plt.plot(kspace, np.log10(np.abs(ee)))title = "zje_dp_pchip-eulereuqtionerrors.png"plt.title(title, fontsize=20)plt.grid()plt.show()if figurepath is not None:fig.savefig(os.path.join(figurepath, title), dpi=300)fig = plt.figure(figsize=(16, 9))plt.plot(kspace, kp)plt.plot(kspace, kspace, 'k--')title = "zje_dp_pchip-k&kp.png"plt.title(title, fontsize=20)plt.grid()plt.show()if figurepath is not None:fig.savefig(os.path.join(figurepath, title), dpi=300)return optk2, kspace, kp, kpp, c, cp, eeif __name__ == "__main__":alpha = 0.36beta = 0.99delta = 0.025m_kgrid = 31m_kgrid2 = 10001iternum = 2000figurepath = "../figure"zje_dp_pchip(alpha, beta, delta,m_kgrid, m_kgrid2,iternum,figurepath=figurepath)
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/213205.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flume 安装部署

文章目录 Flume 概述Flume 安装部署官方网址下载安装配置文件启动 Flume 进程启动报错输出文件乱码问题 Flume 概述 Flume&#xff08;Apache Flume&#xff09;是一个开源的分布式日志收集、聚合和传输系统&#xff0c;属于 Apache 软件基金会的项目之一。其主要目标是简化大…

本科毕业论文查重的依据

大家好&#xff0c;今天来聊聊本科毕业论文查重的依据&#xff0c;希望能给大家提供一点参考。 以下是针对论文重复率高的情况&#xff0c;提供一些修改建议和技巧&#xff1a; 本科毕业论文查重依据&#xff1a;维护学术诚信的基石 摘要&#xff1a; 本科毕业论文是衡量学生学…

Navicat 技术指引 | 适用于 GaussDB 分布式的数据查看器

Navicat Premium&#xff08;16.3.3 Windows 版或以上&#xff09;正式支持 GaussDB 分布式数据库。GaussDB 分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能&#xff0c;还提供强大的高阶功能&#xff08;如模型、结…

自动驾驶:传感器初始标定

手眼标定 机器人手眼标定AxxB&#xff08;eye to hand和eye in hand&#xff09;及平面九点法标定 Ax xB问题求解&#xff0c;旋转和平移分步求解法 手眼标定AXXB求解方法&#xff08;文献总结&#xff09; 基于靶的方法 相机标定 (1) ApriTag (2) 棋盘格&#xff1a;cv::f…

【前端】CSS基础(学习笔记)

一、简介 1、HTML局限性 HTML只关注内容的语义&#xff0c;但是丑&#xff01; 2、CSS概要 CSS 是层叠样式表 ( Cascading Style Sheets ) 的简称&#xff0c;有时我们也会称之为 CSS 样式表或级联样式表。 CSS 是也是一种标记语言 CSS 主要用于设置 HTML 页面中的文本内…

Django的logging-日志模块的简单使用方法

扩展阅读&#xff1a; Python-Django的“日志功能-日志模块(logging模块)-日志输出”的功能详解 现在有下面的Python代码&#xff1a; # -*- coding: utf-8 -*-def log_out_test(content_out):print(content_out)content1 "i love you01" log_out_test(content1)现…

前端使用视频作为背景图的方法

实现思路 通过 video source 引入视频&#xff0c;并对视频播放属性进行设置&#xff0c;再通过 css 使视频覆盖背景即可。 代码 <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>有开发问题可联系作者</title>…

Amazon CodeWhisperer 提供新的人工智能驱动型代码修复、IaC 支持以及与 Visual Studio 的集成...

Amazon CodeWhisperer 的人工智能&#xff08;AI&#xff09;驱动型代码修复和基础设施即代码&#xff08;IaC&#xff09;支持已正式推出。Amazon CodeWhisperer 是一款用于 IDE 和命令行的人工智能驱动型生产力工具&#xff0c;现已在 Visual Studio 中推出&#xff0c;提供预…

VUE+webrtc-streamer 实现实时视频播放(监控设备-rtsp)

效果 下图则启动成功&#xff0c;此时在浏览器访问127.0.0.1:8000可以看到本机监控画面 1、下载webrtc-streamer 地址&#xff1a;https://github.com/mpromonet/webrtc-streamer/releases 2、解压下载包 3、双击webrtc-streamer.exe启动服务 4、将下载包html文件夹下webrt…

使用pytorch查看中间层特征矩阵以及卷积核参数

这篇是我对哔哩哔哩up主 霹雳吧啦Wz 的视频的文字版学习笔记 感谢他对知识的分享 1和4是之前讲过的alexnet和resnet模型 2是分析中间层特征矩阵的脚本 3是查看卷积核参数的脚本 1设置预处理方法 和图像训练的时候用的预处理方法保持一致 2实例化模型 3载入之前的模型参数 4载入…

pyside/qt03——人机协同的编程教学—直接面向chatGPT实战开发(做中学,事上练)

先大概有个草图框架&#xff0c;一点点丰富 我纠结好久&#xff0c;直接用Python写UI代码 还是用designer做UI 再转Python呢&#xff0c; 因为不管怎么样都要转成Python代码&#xff0c; 想了想还是学一下designer吧&#xff0c;有个中介&#xff0c;有直观理解。 直接这样也可…

Python---random库

目录 基本随机数函数(): rand.seed() random() 扩展随机数函数(): random库包含两类函数&#xff1a;基本随机数函数&#xff0c;扩展随机数函数 基本随机数函数:seed(),random() 扩展随机数函数&#xff1a;randint,getrandbits(),uniform(),randrange(),choice(),shuff…

使用git push太慢怎么办

使用git push太慢怎么办 修改host文件&#xff1a; windows 的路径应该在 C:\Windows\System32\drivers\etc\hosts 在host文件的最后一行加上 151.101.72.249 github.global.ssl.fastly.nethost不允许修改就复制一份&#xff0c;修改好了再替换掉&#xff0c;可能会让你输入…

React中使用react-json-view展示JSON数据

文章目录 一、前言1.1、在线demo1.2、Github仓库 二、实践2.1、安装react-json-view2.2、组件封装2.3、效果2.4、参数详解2.4.1、src(必须) &#xff1a;JSON Object2.4.2、name&#xff1a;string或false2.4.3、theme&#xff1a;string2.4.4、style&#xff1a;object2.4.5、…

3DCAT+上汽奥迪:打造新零售汽车配置器实时云渲染解决方案

在 5G、云计算等技术飞速发展的加持下&#xff0c;云渲染技术迎来了突飞猛进的发展。在这样的背景下&#xff0c;3DCAT应运而生&#xff0c;成为了业内知名的实时云渲染服务商之一。 交互式3D实时云看车作为云渲染技术的一种使用场景&#xff0c;也逐步成为一种新的看车方式&a…

c语言实现栈

前言 本文章主要介绍用c语言实现栈&#xff0c;包括栈的各个接口比如STInit&#xff0c;STpush&#xff0c;STpop等等 一.栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶。另一端…

华为配置Smart Link主备备份示例

定义 Smart Link&#xff0c;又叫做备份链路。一个Smart Link由两个接口组成&#xff0c;其中一个接口作为另一个的备份。Smart Link常用于双上行组网&#xff0c;提供可靠高效的备份和快速的切换机制。 Monitor Link是一种接口联动方案&#xff0c;它通过监控设备的上行接口…

1、关于前端js-ajax绕过

1、Ajax知识 、js--Ajax 传统请求跟js--Ajax请求的差别 在实例中用的上js-ajax的有 表单验证&#xff1a; 在用户填写表单时&#xff0c;可以使用 Ajax 在不刷新页面的情况下验证表单字段&#xff0c;并提供即时反馈。 实时搜索&#xff1a; 在搜索框中输入内容时&#xff0…

Vue3使用Tailwind CSS

安装 Tailwind 以及其它依赖项 npm install -D tailwindcsslatest postcsslatest autoprefixerlatest生成配置文件&#xff1a; npx tailwindcss init -p.修改配置文件 tailwind.config.js 2.6版本 &#xff1a; module.exports {purge: [./index.html, ./src/**/*.{vue,j…

javaEE -14(10000字 JavaScript入门 - 1)

一&#xff1a;初始 JavaScript JavaScript (简称 JS)是世界上最流行的编程语言之一&#xff0c;它是一个脚本语言, 通过解释器运&#xff0c;主要在客户端(浏览器)上运行, 现在也可以基于 node.js 在服务器端运行. JavaScript 和 HTML 和 CSS 之间的关系&#xff1a; HTML…