YOLOv8 YoLov8l 模型输出及水果识别

🍨 本文为[🔗365天深度学习训练营学习记录博客
🍦 参考文章:365天深度学习训练营
🍖 原作者:[K同学啊 | 接辅导、项目定制]
🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

YoLov8l 的模型输出:

from  n    params  module                                       arguments0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]2                  -1  3    279808  ultralytics.nn.modules.block.C2f             [128, 128, 3, True]3                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]4                  -1  6   2101248  ultralytics.nn.modules.block.C2f             [256, 256, 6, True]5                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]6                  -1  6   8396800  ultralytics.nn.modules.block.C2f             [512, 512, 6, True]7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]8                  -1  3   4461568  ultralytics.nn.modules.block.C2f             [512, 512, 3, True]9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]12                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]15                  -1  3   1247744  ultralytics.nn.modules.block.C2f             [768, 256, 3]16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]18                  -1  3   4592640  ultralytics.nn.modules.block.C2f             [768, 512, 3]19                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]21                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]22        [15, 18, 21]  1   5585884  ultralytics.nn.modules.head.Detect           [4, [256, 512, 512]]
YOLOv8l summary: 365 layers, 43632924 parameters, 43632908 gradients, 165.4 GFLOPs

命令窗中输入以下命令使用YoLov8l 模型进行数据集训练:

命令模板:

D:\ultralytics-main\ultralytics-main>yolo task=detect mode =train model=yolov8l.yaml data=D:\ultralytics-main\ultralytics-main\paper_data\ab.yaml epochs=100 batch=4

训练结果: 

D:\ultralytics-main\ultralytics-main>yolo task=detect mode =train model=yolov8l.yaml data=D:\ultralytics-main\ultralytics-main\paper_data\ab.yaml epochs=100 batch=4from  n    params  module                                       arguments0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]2                  -1  3    279808  ultralytics.nn.modules.block.C2f             [128, 128, 3, True]3                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]4                  -1  6   2101248  ultralytics.nn.modules.block.C2f             [256, 256, 6, True]5                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]6                  -1  6   8396800  ultralytics.nn.modules.block.C2f             [512, 512, 6, True]7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]8                  -1  3   4461568  ultralytics.nn.modules.block.C2f             [512, 512, 3, True]9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]12                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]15                  -1  3   1247744  ultralytics.nn.modules.block.C2f             [768, 256, 3]16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]18                  -1  3   4592640  ultralytics.nn.modules.block.C2f             [768, 512, 3]19                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]21                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]22        [15, 18, 21]  1   5644480  ultralytics.nn.modules.head.Detect           [80, [256, 512, 512]]
YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsNew https://pypi.org/project/ultralytics/8.0.225 available  Update with 'pip install -U ultralytics'
Ultralytics YOLOv8.0.200  Python-3.10.7 torch-2.0.1+cpu CPU (AMD Ryzen 7 4800U with Radeon Graphics)
engine\trainer: task=detect, mode=train, model=yolov8l.yaml, data=D:\ultralytics-main\ultralytics-main\paper_data\ab.yaml, epochs=100, patience=50, batch=4, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train2, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, stream_buffer=False, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train2
Overriding model.yaml nc=80 with nc=4from  n    params  module                                       arguments0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]2                  -1  3    279808  ultralytics.nn.modules.block.C2f             [128, 128, 3, True]3                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]4                  -1  6   2101248  ultralytics.nn.modules.block.C2f             [256, 256, 6, True]5                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]6                  -1  6   8396800  ultralytics.nn.modules.block.C2f             [512, 512, 6, True]7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]8                  -1  3   4461568  ultralytics.nn.modules.block.C2f             [512, 512, 3, True]9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]12                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]15                  -1  3   1247744  ultralytics.nn.modules.block.C2f             [768, 256, 3]16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]18                  -1  3   4592640  ultralytics.nn.modules.block.C2f             [768, 512, 3]19                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]21                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]22        [15, 18, 21]  1   5585884  ultralytics.nn.modules.head.Detect           [4, [256, 512, 512]]
YOLOv8l summary: 365 layers, 43632924 parameters, 43632908 gradients, 165.4 GFLOPsTensorBoard: Start with 'tensorboard --logdir runs\detect\train2', view at http://localhost:6006/
Freezing layer 'model.22.dfl.conv.weight'
train: Scanning D:\ultralytics-main\ultralytics-main\paper_data\labels... 177 images, 0 backgrounds, 0 corrupt: 100%|██
train: New cache created: D:\ultralytics-main\ultralytics-main\paper_data\labels.cache
val: Scanning D:\ultralytics-main\ultralytics-main\paper_data\labels... 23 images, 0 backgrounds, 0 corrupt: 100%|█████
val: New cache created: D:\ultralytics-main\ultralytics-main\paper_data\labels.cache
Plotting labels to runs\detect\train2\labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.00125, momentum=0.9) with parameter groups 97 weight(decay=0.0), 104 weight(decay=0.0005), 103 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 0 dataloader workers
Logging results to runs\detect\train2
Starting training for 100 epochs...Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size1/100         0G      3.357      4.049      4.284          3        640: 100%|██████████| 45/45 [09:02<00:00, 12.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:18<0all         23         69   0.000719       0.05   0.000601   0.000109Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size2/100         0G      3.227      4.365       3.91         12        640: 100%|██████████| 45/45 [08:47<00:00, 11.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:18<0all         23         69    0.00143     0.0375   0.000824    0.00016Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size3/100         0G      3.119        3.5      3.704          7        640: 100%|██████████| 45/45 [08:43<00:00, 11.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:20<0all         23         69    0.00722      0.396     0.0122    0.00459Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size4/100         0G      2.987       3.13      3.536         12        640: 100%|██████████| 45/45 [09:13<00:00, 12.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:21<0all         23         69    0.00935      0.109    0.00365   0.000727Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size5/100         0G      2.801      3.069      3.395          2        640: 100%|██████████| 45/45 [08:53<00:00, 11.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:21<0all         23         69    0.00362      0.319    0.00282   0.000871Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size6/100         0G      2.766      2.914      3.268         12        640: 100%|██████████| 45/45 [08:52<00:00, 11.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:19<0all         23         69      0.503      0.365    0.00374    0.00163Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size7/100         0G      2.605      2.568      3.175         12        640: 100%|██████████| 45/45 [08:54<00:00, 11.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:19<0all         23         69      0.565      0.327      0.122     0.0509Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size8/100         0G      2.581      2.298      3.141         10        640: 100%|██████████| 45/45 [02:36<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.532      0.429       0.48      0.213Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size9/100         0G      2.444      2.123      3.049          3        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.55      0.768      0.699      0.329Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size10/100         0G       2.34      2.029      2.918          3        640: 100%|██████████| 45/45 [03:30<00:00,  4.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.857      0.478       0.75      0.294Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size11/100         0G      2.303      1.961      2.841         12        640: 100%|██████████| 45/45 [02:36<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.739      0.561      0.831      0.352Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size12/100         0G      2.301      1.988      2.786          5        640: 100%|██████████| 45/45 [02:41<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.779      0.508      0.761      0.367Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size13/100         0G      2.286      1.873      2.751          4        640: 100%|██████████| 45/45 [02:47<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69       0.81      0.768      0.924      0.496Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size14/100         0G      2.281      1.782      2.702          3        640: 100%|██████████| 45/45 [02:40<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.735       0.81      0.906      0.432Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size15/100         0G      2.171      1.689      2.609          5        640: 100%|██████████| 45/45 [02:42<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.754      0.922      0.918      0.511Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size16/100         0G      2.198      1.684      2.616          5        640: 100%|██████████| 45/45 [02:43<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.864      0.668      0.846      0.481Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size17/100         0G      2.157      1.609      2.566         11        640: 100%|██████████| 45/45 [02:42<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.777       0.91       0.93      0.484Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size18/100         0G      2.109      1.533      2.518          5        640: 100%|██████████| 45/45 [02:45<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.851      0.876      0.973      0.532Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size19/100         0G       1.95      1.426        2.4          5        640: 100%|██████████| 45/45 [02:46<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.953      0.947      0.979      0.569Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size20/100         0G      1.985      1.427      2.459          3        640: 100%|██████████| 45/45 [02:45<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.946       0.95      0.983      0.603Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size21/100         0G      1.967      1.424      2.393          4        640: 100%|██████████| 45/45 [02:45<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.926      0.959      0.975      0.586Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size22/100         0G      1.945       1.43      2.378          4        640: 100%|██████████| 45/45 [02:46<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.868       0.95      0.972      0.528Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size23/100         0G      1.909      1.325      2.316          9        640: 100%|██████████| 45/45 [02:45<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.732      0.833      0.733      0.446Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size24/100         0G      1.952      1.385      2.383          8        640: 100%|██████████| 45/45 [02:49<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.871       0.99      0.987        0.6Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size25/100         0G       1.82      1.329      2.279          4        640: 100%|██████████| 45/45 [02:38<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.967      0.975      0.991      0.551Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size26/100         0G      1.843      1.321      2.254          6        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.945      0.963      0.974      0.621Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size27/100         0G      1.723      1.285      2.181          3        640: 100%|██████████| 45/45 [02:40<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.937       0.93      0.976      0.633Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size28/100         0G      1.737      1.251      2.179         11        640: 100%|██████████| 45/45 [02:42<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.818      0.912      0.982      0.625Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size29/100         0G      1.685      1.253      2.149         12        640: 100%|██████████| 45/45 [02:39<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.907       0.95      0.962      0.662Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size30/100         0G      1.633      1.148      2.095          3        640: 100%|██████████| 45/45 [02:38<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.92      0.988       0.99      0.672Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size31/100         0G      1.625      1.167       2.05          6        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.923      0.984      0.966      0.625Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size32/100         0G      1.618      1.195      2.096          3        640: 100%|██████████| 45/45 [02:38<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.838      0.993      0.969      0.676Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size33/100         0G      1.679      1.207      2.118          5        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.991       0.75      0.977      0.662Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size34/100         0G      1.521      1.172      2.013          6        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.953          1      0.988      0.695Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size35/100         0G      1.484      1.047       1.95         10        640: 100%|██████████| 45/45 [02:38<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.968      0.981       0.99      0.702Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size36/100         0G      1.507        1.1      1.988         11        640: 100%|██████████| 45/45 [02:36<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.92      0.948      0.983      0.709Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size37/100         0G      1.514      1.123      1.951          5        640: 100%|██████████| 45/45 [02:36<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.914      0.938      0.975      0.677Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size38/100         0G      1.497      1.079      1.974          4        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.877      0.993      0.977       0.69Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size39/100         0G      1.467      1.046      1.931          5        640: 100%|██████████| 45/45 [02:36<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.908      0.971      0.952      0.664Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size40/100         0G      1.442      1.052      1.913          8        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.973      0.979      0.991      0.712Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size41/100         0G      1.432      1.035       1.93          7        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.952      0.945      0.993      0.729Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size42/100         0G      1.352     0.9914      1.854          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.956      0.998       0.99      0.735Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size43/100         0G      1.361     0.9737      1.854          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.942      0.976      0.988      0.719Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size44/100         0G       1.35      1.028      1.874          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.941      0.967      0.993      0.736Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size45/100         0G      1.318     0.9836      1.853          2        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.81          1      0.976      0.727Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size46/100         0G      1.321      0.972      1.833          5        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.862      0.991      0.969      0.718Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size47/100         0G      1.322     0.9708      1.828          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.928          1       0.99      0.767Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size48/100         0G       1.35     0.9472      1.809          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.97      0.975      0.993      0.774Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size49/100         0G      1.316     0.9418      1.778          2        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.959      0.988      0.992      0.759Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size50/100         0G      1.296     0.9306      1.794          5        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.964      0.975      0.992      0.766Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size51/100         0G      1.289     0.9222      1.748         11        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.972          1      0.994      0.746Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size52/100         0G      1.301     0.9169      1.757          6        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.974          1      0.991      0.777Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size53/100         0G        1.3     0.9216      1.784          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.984          1      0.995      0.763Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size54/100         0G      1.243     0.9061      1.744          9        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.972          1      0.995      0.747Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size55/100         0G      1.248     0.9066      1.755          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.927      0.968      0.991      0.759Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size56/100         0G      1.184     0.8523      1.699          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.966      0.988      0.994      0.789Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size57/100         0G       1.21     0.8508      1.678          3        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.946      0.997      0.988      0.756Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size58/100         0G       1.23     0.8597      1.706          8        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.896      0.973      0.988      0.763Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size59/100         0G       1.22     0.8403      1.682          3        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.927          1      0.994      0.807Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size60/100         0G       1.22     0.8524      1.684          1        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.981      0.995      0.995      0.788Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size61/100         0G      1.192     0.8089      1.639          8        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.982          1      0.995      0.807Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size62/100         0G      1.131     0.7906      1.644          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.924      0.972      0.993      0.771Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size63/100         0G      1.104     0.8165      1.632         12        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.98      0.995      0.995      0.794Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size64/100         0G      1.115      0.787       1.59          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.964      0.986      0.994      0.794Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size65/100         0G      1.137     0.8069      1.592          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.976          1      0.995      0.817Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size66/100         0G        1.1     0.7912      1.622         11        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.925      0.981      0.995      0.795Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size67/100         0G      1.147     0.7932      1.616          8        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.983          1      0.995      0.815Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size68/100         0G      1.041      0.737      1.543          8        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.952      0.984      0.994      0.792Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size69/100         0G       1.12      0.794      1.594          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.917      0.988      0.994      0.796Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size70/100         0G      1.075     0.7553      1.556         10        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.982       0.99      0.995      0.823Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size71/100         0G      1.097      0.766      1.601          2        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.987          1      0.995      0.821Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size72/100         0G      1.086     0.7548      1.564          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.982          1      0.995      0.846Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size73/100         0G      1.059     0.7505      1.536          6        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.988          1      0.995      0.812Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size74/100         0G      1.055     0.7771      1.559          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.984      0.999      0.995      0.822Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size75/100         0G      1.037     0.7189      1.547          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.978      0.997      0.995      0.821Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size76/100         0G      1.072     0.7336      1.542          5        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.994      0.993      0.995      0.819Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size77/100         0G       1.04     0.7151      1.522          9        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.987      0.977      0.995      0.823Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size78/100         0G      1.002     0.6845      1.496          7        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.985          1      0.995      0.832Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size79/100         0G     0.9976     0.7083      1.511          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.974          1      0.994      0.817Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size80/100         0G      1.024     0.6866      1.471          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.961      0.997      0.995      0.827Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size81/100         0G      1.003      0.708      1.517          8        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.98      0.987      0.995      0.822Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size82/100         0G      1.005     0.6982      1.483          9        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.982          1      0.995      0.839Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size83/100         0G      1.011     0.6994      1.488          5        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.979      0.997      0.995       0.84Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size84/100         0G      1.003     0.6665      1.473          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.979       0.99      0.995      0.829Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size85/100         0G      1.028     0.7083      1.524          6        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.988          1      0.995      0.845Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size86/100         0G     0.9896     0.6647      1.497          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.988          1      0.995      0.841Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size87/100         0G     0.9701     0.6515      1.461          7        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.99          1      0.995      0.848Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size88/100         0G      0.977     0.6523      1.443         12        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.991          1      0.995      0.847Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size89/100         0G     0.9417     0.6477      1.455          6        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.988      0.998      0.995      0.832Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size90/100         0G     0.9462     0.6527      1.432          7        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.99          1      0.995      0.855
Closing dataloader mosaicEpoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size91/100         0G     0.8118     0.5889      1.335          3        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.975          1      0.995       0.85Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size92/100         0G      0.785     0.5849       1.29          3        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.932      0.993      0.995      0.836Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size93/100         0G      0.782     0.5619      1.257          3        640: 100%|██████████| 45/45 [161:44:16<00:00,Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.983       0.99      0.995      0.856Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size94/100         0G     0.7927     0.5596      1.321          3        640: 100%|██████████| 45/45 [03:07<00:00,  4.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.986          1      0.995      0.847Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size95/100         0G     0.7747      0.566      1.286          3        640: 100%|██████████| 45/45 [02:58<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.988          1      0.995      0.856Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size96/100         0G     0.7517     0.5521      1.297          3        640: 100%|██████████| 45/45 [02:51<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.989          1      0.995      0.852Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size97/100         0G     0.7576     0.5551      1.271          3        640: 100%|██████████| 45/45 [02:45<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.989          1      0.995      0.857Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size98/100         0G     0.7792     0.5597      1.302          3        640: 100%|██████████| 45/45 [02:53<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.988          1      0.995       0.86Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size99/100         0G     0.7342     0.5362      1.279          3        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.989          1      0.995      0.859Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size100/100         0G     0.7403     0.5395      1.291          3        640: 100%|██████████| 45/45 [02:31<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.988          1      0.995      0.867

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/213629.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android app性能优化指南

Android应用性能优化指南 提高应用程序的性能以实现更流畅的用户体验和更高的可见度。 性能在任何应用程序的成功中发挥着重要的作用。为用户提供流畅无缝的体验应该是开发人员的重点。 应用程序大小 在用户开始使用我们的应用程序之前&#xff0c;他们需要下载应用程序并将…

TypeScript入门实战笔记 -- 开篇 为什么要选择 TypeScript ?

typescript 在线编辑器http://typescript.p2hp.com/play?#code/JYOwLgpgTgZghgYwgAgJIFUDO1Uhge2QG8AoZc5YAEwC5kQBXAWwCNoBuMikOJiOzGCigA5pwrI4ANzhg4UAPwChozgF8SmmAxAIwwfCGRYcefAAoADlHyXMdDNii4CASmJdyCQ5nwAbCAA6P3wRKxs7ABpkAHJrW0wY1xINEhNnM3MiSlpkAEZonj46GIBrROQ1…

C/C++之输入输出

文章目录 一.C语言的输入输出1.printfi. 输出整数ii. 浮点数iii.字符 & 字符串 2.scanfi.整数ii.浮点数iii. 字符 & 字符串 3.特殊用法i. * 的应用ii. %n 的应用iii. %[] 的应用 二.C中的输入输出1.couti. 缓冲区&#xff08;buffer&#xff09;ii. cout之格式化输出 2…

区块链optimism主网节点搭建

文章目录 官方参考资料编译环境搭建编译Optimism Monorepo编译op-geth 执行下载数据快照生成op-geth和op-node通信密钥op-geth执行脚本 op-node执行脚本 启动日志op-gethop-node 本文是按照官方参考资料基于源码的方式成功搭建optimism主网节点。 官方参考资料 源码&#xff1…

【设计模式-4.4】行为型——模板方法模式

说明&#xff1a;本文介绍设计模式中行为型设计模式中的&#xff0c;模板方法模式&#xff1b; 生存 模版方法模式是行为型设计模式&#xff0c;关注于对象的行为。在《秒懂设计模式》&#xff08;刘韬 著&#xff09;中举了一个例子&#xff0c;例如哺乳动物的生存技能&…

1688API接口系列,商品详情数据丨搜索商品列表丨商家订单类丨1688开放平台接口使用方案

1688商品详情接口是指1688平台提供的API接口&#xff0c;用于获取商品详情信息。通过该接口&#xff0c;您可以获取到商品的详细信息&#xff0c;包括商品标题、价格、库存、描述、图片等。 要使用1688商品详情接口&#xff0c;您需要先申请1688的API权限&#xff0c;并获取ac…

【开源】基于Vue+SpringBoot的河南软件客服系统

文末获取源码&#xff0c;项目编号&#xff1a; S 067 。 \color{red}{文末获取源码&#xff0c;项目编号&#xff1a;S067。} 文末获取源码&#xff0c;项目编号&#xff1a;S067。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统管理人员2.2 业务操作人员 三、…

uniapp 云打包 生成安卓证书文件

现在使用uniapp来开发小程序&#xff0c;H5&#xff0c;APP越来越多了&#xff0c;目前开发了一款APP&#xff0c;使用的也是uniapp。在此记录下用uniapp开发app云打包时约到的一些问题吧。 前因是我司安卓同学休产假&#xff0c;像云打包时需要的证书文件只能自己动手来搞。看…

Avaya Aura Device Services 任意文件上传漏洞复现

0x01 产品简介 Avaya Aura Device Services是美国Avaya公司的一个应用软件。提供一个管理 Avaya 端点功能。 0x02 漏洞概述 Avaya Aura Device Services 系统PhoneBackup接口处存在任意文件上传漏洞&#xff0c;攻击者可绕过验证上传任意文件获取服务器权限。 0x03 影响范围…

使用Jmeter进行http接口测试

前言&#xff1a; 本文主要针对http接口进行测试&#xff0c;使用Jmeter工具实现。 Jmter工具设计之初是用于做性能测试的&#xff0c;它在实现对各种接口的调用方面已经做的比较成熟&#xff0c;因此&#xff0c;本次直接使用Jmeter工具来完成对Http接口的测试。 一、开发接口…

Mac电脑vm虚拟机 VMware Fusion Pro中文 for mac

VMware Fusion Pro是一款功能强大的虚拟机软件&#xff0c;适用于需要在Mac电脑上运行其他操作系统的用户。它具有广泛的支持、快速稳定的特点以及多种高级功能&#xff0c;可以满足用户的各种需求和场景。 多操作系统支持&#xff1a;VMware Fusion Pro允许在Mac电脑上运行多…

平台工程文化:软件开发的创新路径和协作之道

在快速发展的软件开发领域&#xff0c;具有前瞻性思维的企业组织正在拥抱平台工程文化的变革力量。这种创新方法强调创建共享平台、工具和实践&#xff0c;使开发人员能够更快、更高效地交付高质量的软件。在本文中&#xff0c;我们将深入探讨平台工程文化的核心原则和深远的好…

Scala 从入门到精通

Scala 从入门到精通 数据类型 pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http:…

基于STM32 + DMA介绍,应用和步骤详解(ADC多通道)

前言 本篇博客主要学习了解DMA的工作原理和部分寄存器解析&#xff0c;针对ADC多通道来对代码部分&#xff0c;应用部分作详细讲解&#xff0c;掌握代码编程原理。本篇博客大部分是自己收集和整理&#xff0c;如有侵权请联系我删除。 本次博客开发板使用的是正点原子精英版&am…

springboot_java养老院老年人问诊服务预约系统ssm

系统的目标是为管理员&#xff0c;服务者&#xff0c;医生和用户搭建一个网上沟通平台&#xff0c;保证四方的安全&#xff0c;并使四方的利益最大化。 .用户&#xff1a; &#xff08;1&#xff09;用户注册登入页面&#xff1a;用户进行操作时需要是已注册登入用户 &#xff…

WireShark监控浏览器登录过程网络请求

软件开发中经常前后端扯皮。一种是用Chrome浏览器的开发者工具 来看网络交互&#xff0c;但是前提是 网络端口的确是通的。 WireShark工作在更低层。 这个工具最大的好处&#xff0c;大家别扯皮&#xff0c;看网络底层的log&#xff0c;到底 你的端口开没开&#xff0c; 数据…

结合ColorUI组件开发微信小程序

1.自定义组件生命周期函数&#xff1a; Component({data: {},attached() {console.log("自定义组件生命周期函数 attached--先执行");this.getPos();},ready() {console.log("ready生命周期函数---在attached之后执行")},methods: {getPos() {var that th…

uniapp 使用 $emit和$on——$on中无法为data中的变量赋值

问题在于this的指向&#xff0c; 解决办法是使用变量保存$on&#xff0c;其次再为data中的值赋值 以下是具体代码&#xff1a; 1、html代码&#xff1a; <view class"form_picker" click"selePositionFun()"><view class""><inp…

基于remix+metamask+ganache的智能合约部署调用

在我们部署合约时为了让它更接近真实区块链去中心化体验&#xff0c;我们需要调用小狐狸&#xff08;Metamask&#xff09;来进行真实交易&#xff0c;而metamask里没有内置虚拟测试币&#xff0c;我们需要进行调用Ganache来添加带有虚拟测试币的账号。以上就是三者的关系&…

PHP基础 - 输入输出

在 PHP 中,有多种方法可以用来输出内容。下面是其中的几种: 1、echo: 这是最常见的输出语句之一,可以输出一个或多个字符串。它是一个语言结构,可以省略括号。使用示例如下: <?php // 使用 echo 语句输出一个字符串 echo "Hello, world!\n";// 可以使用…