了解c++11中的新增

一,统一的初始化列表

在引入c++11后,我们得出计划都可以用初始化列表进行初始化。

C++11 扩大了用大括号括起的列表 ( 初始化列表 ) 的使用范围,使其可用于所有的内置类型和用户自
定义的类型, 使用初始化列表时,可添加等号 (=) ,也可不添加

int  main()
{int i = 0;int j = { 0 };int k{ 0 };int l(0);//如日期类return 0;
}//对象的初始化
struct Point{int _x;int _y;};int main(){int array1[] = { 1, 2, 3, 4, 5 };int array2[5] = { 0 };Point p = { 1, 2 };return 0;}//日期类对象的初始化
class Date
{
public:Date(int year, int month, int day):_year(year), _month(month), _day(day){cout << "Date(int year, int month, int day)" << endl;}
private:int _year;int _month;int _day;
};
int main()
{Date d1(2022, 1, 1); // old style// C++11支持的列表初始化,这里会调用构造函数初始化Date d2{ 2022, 1, 2 };Date d3 = { 2022, 1, 3 };//这里的本质就是,以该参数构造对象再拷贝给给这里的对象Date* d4 = new Date[3]{ {2023,5,3}, {2022, 1, 3},{2023,1,2} };return 0;
}

数组与链表的初始化

int main()
{vector<int> v = { 1,2,3,4,5,6 };list<string> l = { "hello","world" };return 0;
}

并且再c++11引入了std::initializer_list ,一种特殊的构造方式:

initiallizer_list

initializer_list是C++11提供的新类型,定义在头文件中。 用于表示某种特定类型的值的数组,和vector一样,initializer_list也是一种模板类型。即一组数据的类型。

一般它的作用也就是为了支持容器的参数列表的构造。

如下:通过typeid我们来查看il的类型,

库中的定义: 

 

 库中实现了三个成员函数,分别是首尾和大小。我们不难看出这肯定是实现了迭代器,也确实是这样样,他的迭代器就是他的原生指针。

int main()
{auto il = { 1,2,3,4,5 };cout << typeid(il).name()<<endl;auto it = il.begin();while (it != il.end()){cout << *it;it++;}cout << endl;for (auto it : il){cout << it;}return 0;
}

 对于initailizer_list,不仅仅是一般的类型的数据的和,对于vector,list,map,set等构造都支持参数列表(nitailizer_list)这样的初始化:

int main()
{pair<string, string> kv = { "希尔排序","1" };map<string, string> p = { kv,{"冒泡排序","2"},{"快速排序","3"}};//初始化map时,除了用pair,我们这里也可以用initializer_list  ->实际上回隐式类型转换为pairfor(auto &it:p){cout << it.first<<" "<<it.second<< endl;}return 0;
}

 二,声明

auto

C++98 auto 是一个存储类型的说明符,表明变量是局部自动存储类型,但是局部域中定义局
部的变量默认就是自动存储类型,所以 auto 就没什么价值了。 C++11 中废弃 auto 原来的用法,将
其用于实现自动类型腿断。这样要求必须进行显示初始化,让编译器将定义对象的类型设置为初
始化值的类型。

自动类型推导,更加简便的声明。实际当中,我们一般范围for用,

decltype

关键字 decltype 将变量的类型声明为表达式指定的类型。
int main()
{//对于类型推导 我们知道typidint i = 10;double j = 10.2;cout << typeid(i).name() << endl;cout << typeid(j).name() << endl;//获取类型的字符串 但不能当作类型去定义 //我们平时需要定义时就用auto定义,但若我们的模板参数需要这个类型如何取到这个类型//利用关键字decltype 获取数据类型vector<decltype(j)> v;v.push_back(1);v.push_back(2);for (int i = 0; i < v.size(); i++){cout << v[i]<<" ";}decltype(j) data;//可以当作类型用定义return 0;}

三,范围for

就是迭代器基础实现的遍历,写起来更加方便,我们差不多已经都熟练使用。

四,智能指针

智能指针主要用于管理在堆上分配的内存,它将普通的指针封装为一个栈对象。当栈对象的生存周期结束后,会在析构函数中释放掉申请的内存,从而防止内存泄漏。C++ 11中最常用的智能指针类型为shared_ptr,它采用引用计数的方法,记录当前内存资源被多少个智能指针引用。该引用计数的内存在堆上分配。

五,c++11种STL库中的变化

  新容器:forward_list(单链表),arry(静态数组),两个哈希表封装的无序关联容器unordered_map,unordered_set。

实际应用中,arry没谁用,我们有vetor,单链表意义也不大,虽然节省空间,但对于尾删效率太低下了,较有大用处的是者两个无序容器.

六,右值引用与移动语义(重要)

什么是左值,什么是右值?

传统的 C++ 语法中就有引用的语法,而 C++11 中新增了的右值引用语法特性。
我们之前学习的引用就叫做左值引用。无论左值引用还是右值引用,都是给对象取别名
什么是左值?左值引用?
左值是一个表示数据的表达式(如变量名或解引用的指针) 我们可以获取它的地址 + 可以对它赋
值, 左值可以出现赋值符号的左边,右值不能出现在赋值符号左边 。定义时 const 修饰符后的左
值,不能给他赋值,但是可以取它的地址。左值引用就是给左值的引用,给左值取别名。
int main()
{//下面三个变量都是左值     我们可以给它赋值,主要看他是否可以取地址int* p = new int(1);int b = 0;const int c = 10;//i还是左值int i = 0;int j = i;}

什么是右值?右值引用?
右值也是一个表示数据的表达式,如:字面常量、表达式返回值,函数返回值 ( 这个不能是左值引
用返回 ) 等等, 右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边, 右值不能
取地址 。右值引用就是对右值的引用,给右值取别名。
int main()
{int i = 0, j = 0;//如下都是右值  右值可以是表达式,返回值,右值无法取地址10;i + j;fmin(i , j);//之前的引用都是左值引用,我们来看看右值引用int&& r = 10;double &&r1= i + j;int&& min = fmin(i, j);}

左值引用不能直接给给右值取别名,需要const。右值引用也不能直接给左值引用,这里可以move后引用。

int main()
{//左值引用给右值取别名,不能直接引用,右值不能被修改,因此需要constconst int& i = 10;int&& j = 10;//右值引用右值int&& m = i + j;//右值引用引用左值     不能直接引用,还是需要转化类型   //右值引用可以给move后的左值引用int p = 10; int q = 10;int&& r = move(q);int&& n = (const int) q;}

引入右值引用与左值引用的效果一样,减少大量拷贝。

那么右值引用是如何使用的?

右值引用的场景

因为在函数的返回值中,如果要对函数返回的值引用,则必须要满足,在函数的声明周期结束后,值的生命周期还在,否则就无法使用引用。

那我们想要返回该如何?比如说我们自己实现string里面的tostring:
//那么如何实现这里的ret返回引用呢?
string tostring(int x)
{string ret;while (x){int val = x % 10;x = x / 10;ret += (val + '0');}reverse(ret.begin(),ret.end());return ret;
}

在正常引用函数的返回值肯定不行。

首先函数返回值是一个右值,我们需要使用右值引用,其次右值引用还是要考虑到该问题,函数调用完毕,释放函数栈帧时,对应的返回值的生命周期也结束了,此时引用,引用的就是个空。
首先在c++中,右值分为纯右值与将亡值(自定义的右值)。
首先对于正常的返回,不调用引用,过程是这样的:

首先ret在这里会调用三次深拷贝,代价太大,那么有无优化的方案?

 对于这里的ret,还是传值返回,但是在即将销毁时,我们可以将它识别是一个将亡值(右值),对于将亡值,我们拷贝构造时,使用右值引用传参(移动拷贝),直接把资源转移过来,不再进行深度拷贝,但是在进入main函数中的拷贝之后,赋值是不支持右值对象的,因此这里还需要实现右值赋值。

amespace myspace
{class string{public:typedef char* iterator;iterator begin(){return _str;}iterator end(){return _str + _size;}string tostring(int x){string ret;while (x){int val = x % 10;x = x / 10;ret += (val + '0');}return ret;}string(const char* str = ""):_size(strlen(str)), _capacity(_size){_str = new char[_capacity + 1];strcpy(_str, str);}void swap(string& s){::swap(_str, s._str);::swap(_size, s._size);::swap(_capacity, s._capacity);}// 拷贝构造string(const string& s):_str(nullptr){cout << "string(const string& s) -- 深拷贝" << endl;string tmp(s._str);swap(tmp);}// 赋值重载string& operator=(const string& s){cout << "string& operator=(string s) -- 深拷贝" << endl;string tmp(s);swap(tmp);return *this;}// 移动构造  右值引用string(string&& s):_str(nullptr), _size(0), _capacity(0){cout << "string(string&& s) -- 移动语义" << endl;swap(s);}// 移动赋值  右值引用string& operator=(string&& s){cout << "string& operator=(string&& s) -- 移动语义" << endl;swap(s);return *this;}~string(){delete[] _str;_str = nullptr;}char& operator[](size_t pos){assert(pos < _size);return _str[pos];}void reserve(size_t n){if (n > _capacity){char* tmp = new char[n + 1];strcpy(tmp, _str);delete[] _str;_str = tmp;_capacity = n;}}void push_back(char ch){if (_size >= _capacity){size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2;reserve(newcapacity);}_str[_size] = ch;++_size;_str[_size] = '\0';}//string operator+=(char ch)string& operator+=(char ch){push_back(ch);return *this;}const char* c_str() const{return _str;}private:char* _str;size_t _size;size_t _capacity; // 不包含最后做标识的\0};
}

通过右值引用我们减掉了深度拷贝的代价。这里我们一般还可以通过调试查看函数调用信息,

对于将亡值,我们一般使用move将一个左值转化为将亡值。自定义的右值一般也是将亡值。

仔细看的话,用过右值引用,我们还将他的生命周期延长了,我们通过右值引用使得这份资源还在。

当然我这里的右值引用,移动构造对于深拷贝就能发挥它的作用,浅拷贝的自定义类型没什么用。

注意:注意move移动语义,本是是不会改变这个值的属性,而是调用后的返回值的类型发生了改变。

其次对于一个右值的引用之后它的属性是一个左值,因为右值不能被修改,但是右值的右值引用可以被修改,否则无法实现移动构造,与移动复制。

库中的一些应用

 除了返回值可以被引用外,移动构造与移动拷贝相对于左值的拷贝构造,赋值。更加的快速和节省空间,因为我们这里直接是引用。

通过右值引用实现了返回值的引用,以这种方式许多场景下的应用就可以实现了。

c+11后,我们通过转化为右值,使用移动构造,移动拷贝,效率就会高许多。

STL容器在c++11后,都增加了移动构造与移动赋值。

vector的构造与赋值

 

list的构造与赋值

以及push操作也基本添加了右值版本:

万能引用

c++11在提供右值及右值引用后,还增加了万能引用。

所谓的万能引用,就是模板参数的引用,这里用的是&&,但不代表是右值引用。

格式如下:

template<typename T>
void PerfectForward(T&& t)
{Fun(t);
}

通过万能引用,是左值就调左值引用,是右值就调右值引用。但是还是要记住一点,右值被右值引用之后,属性是左值,因此在处理右值传参用右值对应的接口,我们都需要吧接口里的值的类型在move一下。

注意事项:

针对移动构造函数和移动赋值运算符重载有一些需要注意的点如下:
如果你没有自己实现移动构造函数,且没有实现析构函数 、拷贝构造、拷贝赋值重载中的任
意一个。那么编译器会自动生成一个默认移动构造。默认生成的移动构造函数,对于内置类
型成员会执行逐成员按字节拷贝,自定义类型成员,则需要看这个成员是否实现移动构造,
如果实现了就调用移动构造,没有实现就调用拷贝构造。
如果你没有自己实现移动赋值重载函数,且没有实现析构函数 、拷贝构造、拷贝赋值重载中
的任意一个,那么编译器会自动生成一个默认移动赋值。默认生成的移动构造函数,对于内
置类型成员会执行逐成员按字节拷贝,自定义类型成员,则需要看这个成员是否实现移动赋
值,如果实现了就调用移动赋值,没有实现就调用拷贝赋值。 ( 默认移动赋值跟上面移动构造
完全类似 )
如果你提供了移动构造或者移动赋值,编译器不会自动提供拷贝构造和拷贝赋值。

七.defalut与delete

强制生成默认函数的关键字default,;取消生成默认函数的关键字delete:
C++11可以让你更好的控制要使用的默认函数。假设你要使用某个默认的函数,但是因为一些原
因这个函数没有默认生成。比如:我们提供了拷贝构造,就不会生成移动构造了,那么我们可以
使用default关键字显示指定移动构造生成。 当然我们也可以取消不让这些函数生成。

八,模板的可变参数

首先我们知道函数的参数可以是可变参数,c++11对模板也引入了可变参数。

这里的参数,我们叫可变参数包,

template<class ...Args> //模板的可变参数包
void show(Args...arg)
{//可以包含任意多个类型的参数
}
STL容器中的 empalce相关接口函数:就是可变参数
emplace 系列的接口,支持模板的可变参数,并且也可以万能引用。
以vector为例,在c++11当中增加了两个家口,emplace与emplace_back,这两个接口都是用来
插入的,emplace_back尾插,那么这两个插入与insert有什么区别呢?
首先就是可变参数,emplace会根据参数将Args作为构造函数的参数构造出一个该元素,然后插入其中。
#include <iostream>
#include <vector>int main ()
{std::vector<int> myvector = {10,20,30};myvector.emplace_back (100);myvector.emplace_back (200);std::cout << "myvector contains:";for (auto& x: myvector)std::cout << ' ' << x;std::cout << '\n';return 0;
}//运行结果  myvector contains: 10 20 30 100 200

在引入移动构造与构造时,insert就是先构造,在移动构造插入,而对于emplace是直接构造插入。对于大一点的浅拷贝的自定义类型,emplace相对于会更好一点。

九,lambda表达式

在c++98之前,比如我们在用sort进行排序时,我们是传一个仿函数,且该种排序只能支持库里提供的类型,另外的类型就需要我们重写一个仿函数传进去。

操了c++11,虽然问题得到了解决,但是人们认为这样写还是太过麻烦,比如每次传参进去的仿函数都必须以它如何排序的方式进行命名,因为具体实现的比较我们是看不到的,因此借鉴了python的lambda表达式,实现更加方便,更加清晰的比较。

lambda表达式的构成:

lambda 表达式书写格式: [capture-list] (parameters) mutable -> return-type { statement
}
lambda 表达式各部分说明:
[capture-list] : 捕捉列表 ,该列表总是出现在 lambda 函数的开始位置, 编译器根据 []
判断接下来的代码是否为 lambda 函数 捕捉列表能够捕捉上下文中的变量供 lambda
函数使用
(parameters) :参数列表。与 普通函数的参数列表一致 ,如果不需要参数传递,则可以
连同 () 一起省略。
mutable :默认情况下, lambda 函数总是一个 const 函数, mutable 可以取消其常量
性。使用该修饰符时,参数列表不可省略 ( 即使参数为空 ) 。---不需要一般可以忽略不写
->returntype :返回值类型 。用 追踪返回类型形式声明函数的返回值类型 ,没有返回
值时此部分可省略。 返回值类型明确情况下,也可省略,由编译器对返回类型进行推
{statement} :函数体 。在该函数体内,除了可以使用其参数外,还可以使用所有捕获
到的变量。

事实上lalmbda本质就是一个函数对象,我们一般这样去使用它:

int main()
{//比如简单写一个打印出入的参数
auto it=	[]       (int x)    ->int   { cout << x; return 0; };//捕捉列表  参数列表  返回类型   函数体//我们一般用auto自定推导类型来获取这个对象it(1);//对象传参
//当然我们也可以省略返回值类型,它可以自动推导
//auto it=[](int x){ cout << x; return 0; };return 0;
}

 那么我们就可以用lambda去替换仿函数。

现在我们就可以用lambda表达式去实现仿函数一样的功能:

int main()
{vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2, 3 }, { "菠萝", 1.5, 4 } };//仿函数sort(v.begin(), v.end(), ComparePriceLess());sort(v.begin(), v.end(), ComparePriceGreater());//lambda//这里的lambda可以理解为匿名函数对象sort(v.begin(), v.end(), [](Goods &it1,  Goods& it2) {return it1._price > it2._price; });sort(v.begin(), v.end(), [](Goods &it1, Goods& it2) {return it1._price < it2._price; });return 0;
}

因为sort函数提供的是模板(对于比较这一部分),因此我们只要传参可调用的对象就可以。

那么有人就开始疑惑了,lambda返回类型到底是一个什么?通过typeid我们可以看看:

int main()
{auto p=[](Goods& it1, Goods& it2) {return it1._price > it2._price; };auto q = [](Goods& it1, Goods& it2) {return it1._price > it2._price; };cout << typeid(p).name()<<endl;cout << typeid(q).name()<<endl;
}

 实际上是一个类,每个lambda都有自己对应的类。

关于捕捉列表,lambda表的是其他构成我们能理解,但对于捕捉列表是什么呢?

所谓的捕捉,就是可以将父作用域里的变量直接拿来使用,但传值过来的变量无法被修改。

除了传值,也可以传引用捕捉,但在书写方面与取地址写法一样,注意别混淆。

传值就是普通函数传参,传引就是引用传参。如果想捕捉地址,就实现把地址取出来。

当然捕捉引用时,它自动传参时,此时就不再使用mutable了。

即:

int x = 1; int y = 2;//不捕获时auto q = [](int x, int y)->void{int temp = x;x = y;y = temp;};q(x, y);//这里只是作为参数传递过去,形参的改变不影响实参cout<<x<<" " << y << endl;//捕获时,但注意,这里虽然捕获了,可以直接用//但此时默认情况下这里的函数是不能修改的,需要加入mutable表示可修改auto p = [x, y]()mutable-> void {int temp = x;x = y;y = temp;};p();//这里只是作为参数传递过去,形参的改变不影响实参cout << x << " " << y << endl;auto n = [&x, &y]()-> void{int temp = x;x = y;y = temp;};n();//这里是传引用,因此会完成交换cout << x << " " << y << endl;

lambda的原理也是仿函数。

十,包装器

function

有了仿函数,lambda,实际上还有函数指针,这三个本质其实都一样,都是一个函数,可以被其他对象调用去实现某个功能。因为除了函数指针和仿函数还能传,lanmbda的类型我们是不得而知的,需要function去将这些包装,我们能直接获取其类型。

因此在c++11中又提出一个概念包装器,就是跟适配器一样。

我们之前学习单链表,栈和队列等就是用vector,list去适配出这样的一个结构。

而这里的包装器,就是用函数指针,或者lambda,仿函数去适配(包装)我们所需要的一个“函数对象”,去被调用。

语法:class function

std::function 在头文件 < functional >
// 类模板原型如下
template < class T > function ;     
template < class Ret , class ... Args >
class function < Ret ( Args ...) > ;
模板参数说明:
Ret : 被调用函数的返回类型
Args… :被调用函数的形参

 function的本质就是一个类模板,适配就是去适配 仿函数,函数指针,lambda的其中一个。

//包装器 function
//我们还是以交换两个整数为例
//仿函数
struct Swap1
{void operator()(int& x, int& y){int temp = x;x = y;y = temp;}
};
//函数
void Swap2(int& x,int& y)
{int temp = x;x = y;y = temp;
}
//lambda
auto Swap3 = [](int& x, int& y)->void {int temp = x; x = y; y = temp; };
//首先我们先来使用一下
int main()
{int x = 1; int y = 2;//可以包装这三个function<void(int&, int&)> p1 = Swap1();p1(x, y);cout << x << " " << y << endl;function<void(int&, int&)> p2 = Swap2;p2(x, y);cout << x << " " << y << endl;function<void(int&, int&)> p3 = Swap3;p3(x, y);cout << x << " " << y << endl;//通过function模板 ,在传入参数时,我们就可以选择三个其中之一进行传参map<string, function<void(int&, int&)> >  op = { {"仿函数", Swap1()},{"函数指针", Swap2},{"lambda", Swap3} };/*m.insert(make_pair("仿函数", Swap1()));m.insert(make_pair("函数指针", Swap2));m.insert(make_pair("仿函数", Swap3));*///map<string, function<void(int&, int&)> >  m = { {"仿函数", p1},{"函数指针", p2},{"仿函数", p3} };op["仿函数"](x, y); op["函数指针"](x, y);op["lambda"](x, y);}

当然这里我们的函数的参数类型是一样的。

包装成员函数

在包装成员函数时,我们需要注意几点:

1.指定类域

2.要在成员函数前加&符号,才表示成员函数的地址

3.传参需要加入他的地址

class Func
{
public:static int Add1(int x, int y){return x + y;}double Add2(double  x, double  y){return x + y;}
};
int main()
{//如果是static,我们可以直接包装function<int(int, int)> p1 = Func::Add1;cout << p1(1, 2)<<endl;//如果是普通成员函数,则还需要一个对象指针Func a;function<double(Func*, double, double)> p2 = &Func::Add2;cout << p2(&a, 1.1, 2.1) << endl;//对象也可以function<double(Func a, double, double)> p3 = &Func::Add2;Func b;cout << p3(b,1.2, 2.3) << endl;
}

bind

除了function,还有第二个包装器bind:

std::bind 函数定义在头文件中, 是一个函数模板,它就像一个函数包装器 ( 适配器 ) 接受一个可
调用对象( callable object ),生成一个新的可调用对象来 适应 原对象的参数列表 。一般而
言,我们用它可以把一个原本接收 N 个参数的函数 fn 通过绑定一些参数,返回一个接收M个(M
可以大于N,但这么做没什么意义)参数的新函数 。同时,使用 std::bind 函数还可以实现参数顺
序调整等操作。
// 原型如下:
template < class Fn , class ... Args >
/* unspecified */ bind ( Fn && fn , Args && ... args );
// with return type (2)
template < class Ret , class Fn , class ... Args >
/* unspecified */ bind ( Fn && fn , Args && ... args )

 可以用来调整参数的位置,

int main()
{//表示绑定函数plus 参数分别由调用 func1 的第一,二个参数指定std::function<int(int, int)> func1 = std::bind(Plus, placeholders::_1, placeholders::_2);//表示绑定函数 plus 的第一,二为: 1, 2auto  func2 = std::bind(Plus, 1, 2);   cout << func1(1, 2) << endl;cout << func2() << endl;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/213645.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JDK中lock锁的机制,其底层是一种无锁的架构实现的,公平锁和非公平锁

简述JDK中lock锁的机制&#xff0c;其底层是一种无锁的架构实现的&#xff0c;是否知道其是如何实现的 synchronized与lock lock是一个接口&#xff0c;而synchronized是在JVM层面实现的。synchronized释放锁有两种方式&#xff1a; 获取锁的线程执行完同步代码&#xff0c;…

androidstudio设置内存

androidstudio一直 scanning files to index&#xff0c;需要去设置内存&#xff1a; 操作如下&#xff1a;

在Mac上安装Windows应用程序的简便方法:CrossOver for Mac

对于许多Mac用户来说&#xff0c;有时候他们可能需要使用一些只有在Windows上才能找到的应用程序。以前&#xff0c;解决这个问题的方法是通过安装Windows虚拟机或使用双系统来在Mac上运行Windows应用程序。但这些方法需要额外的硬件资源和时间来配置&#xff0c;并且可能会导致…

MEME成风,为何比特币生态无法复刻以太坊生态的多样玩法?

铭文市场火了之后&#xff0c;很多人对 BTC L2 投入了过多的期许&#xff0c;认为 BTC 2 层会像以太坊 layer2 一样辉煌&#xff1f; 然而事实是&#xff0c;比特币生态的「成功」可能很长时间会停滞在「资产发行」叙事阶段&#xff0c;要复刻以太坊的生态多样玩法&#xff0c…

栈和队列OJ题

有效的括号 OJ链接 思路 要注意进行顺序匹配的时候&#xff0c;要让右括号和栈顶元素匹配&#xff0c;匹配了一个以后就要让栈顶元素出栈&#xff01;&#xff01; 在顺序匹配时&#xff0c;要用 *s ] && top ! [ 像这样的不等号&#xff0c;而不能用&#xff0c;因为…

12.4_黑马MybatisPlus笔记(下)

目录 11 12 thinking&#xff1a;关于Mybatis Plus中BaseMapper和IService&#xff1f; 13 ​编辑 thinking&#xff1a;CollUtil.isNotEmpty? 14 thinking&#xff1a;Collection、Collections、Collector、Collectors&#xff1f; thinking&#xff1a;groupBy&#…

前端打包环境配置步骤

获取node安装包并解压 获取node安装包 wget https://npmmirror.com/mirrors/node/v16.14.0/node-v16.14.0-linux-x64.tar.xz 解压 tar -xvf node-v16.14.0-linux-x64.tar.xz 创建软链接 sudo ln -s 此文件夹的绝对路径/bin/node /usr/local/bin/node&#xff0c;具体执行如下…

彻底搞懂零拷贝技术( DMA、PageCache)

DMA 直接内存访问&#xff08;Direct Memory Access&#xff09; 什么是DMA&#xff1f; 在进行数据传输的时候&#xff0c;数据搬运的工作全部交给 DMA 控制器&#xff0c;而 CPU 不再参与&#xff0c;可以去干别的事情。 传统I/O 在没有 DMA 技术前&#xff0c;全程数据…

AIGC之Image2Video(一)| Animate Anyone:从静态图像生成动态视频,可将任意图像角色动画化

近日&#xff0c;阿里发布了Animate Anyone&#xff0c;只需一张人物照片&#xff0c;结合骨骼动画&#xff0c;就能生成人体动画视频。 项目地址&#xff1a;https://humanaigc.github.io/animate-anyone/ 论文地址&#xff1a;https://arxiv.org/pdf/2311.17117.pdf Github…

YOLOv8 YoLov8l 模型输出及水果识别

&#x1f368; 本文为[&#x1f517;365天深度学习训练营学习记录博客 &#x1f366; 参考文章&#xff1a;365天深度学习训练营 &#x1f356; 原作者&#xff1a;[K同学啊 | 接辅导、项目定制] &#x1f680; 文章来源&#xff1a;[K同学的学习圈子](https://www.yuque.com/m…

Android app性能优化指南

Android应用性能优化指南 提高应用程序的性能以实现更流畅的用户体验和更高的可见度。 性能在任何应用程序的成功中发挥着重要的作用。为用户提供流畅无缝的体验应该是开发人员的重点。 应用程序大小 在用户开始使用我们的应用程序之前&#xff0c;他们需要下载应用程序并将…

TypeScript入门实战笔记 -- 开篇 为什么要选择 TypeScript ?

typescript 在线编辑器http://typescript.p2hp.com/play?#code/JYOwLgpgTgZghgYwgAgJIFUDO1Uhge2QG8AoZc5YAEwC5kQBXAWwCNoBuMikOJiOzGCigA5pwrI4ANzhg4UAPwChozgF8SmmAxAIwwfCGRYcefAAoADlHyXMdDNii4CASmJdyCQ5nwAbCAA6P3wRKxs7ABpkAHJrW0wY1xINEhNnM3MiSlpkAEZonj46GIBrROQ1…

C/C++之输入输出

文章目录 一.C语言的输入输出1.printfi. 输出整数ii. 浮点数iii.字符 & 字符串 2.scanfi.整数ii.浮点数iii. 字符 & 字符串 3.特殊用法i. * 的应用ii. %n 的应用iii. %[] 的应用 二.C中的输入输出1.couti. 缓冲区&#xff08;buffer&#xff09;ii. cout之格式化输出 2…

区块链optimism主网节点搭建

文章目录 官方参考资料编译环境搭建编译Optimism Monorepo编译op-geth 执行下载数据快照生成op-geth和op-node通信密钥op-geth执行脚本 op-node执行脚本 启动日志op-gethop-node 本文是按照官方参考资料基于源码的方式成功搭建optimism主网节点。 官方参考资料 源码&#xff1…

【设计模式-4.4】行为型——模板方法模式

说明&#xff1a;本文介绍设计模式中行为型设计模式中的&#xff0c;模板方法模式&#xff1b; 生存 模版方法模式是行为型设计模式&#xff0c;关注于对象的行为。在《秒懂设计模式》&#xff08;刘韬 著&#xff09;中举了一个例子&#xff0c;例如哺乳动物的生存技能&…

1688API接口系列,商品详情数据丨搜索商品列表丨商家订单类丨1688开放平台接口使用方案

1688商品详情接口是指1688平台提供的API接口&#xff0c;用于获取商品详情信息。通过该接口&#xff0c;您可以获取到商品的详细信息&#xff0c;包括商品标题、价格、库存、描述、图片等。 要使用1688商品详情接口&#xff0c;您需要先申请1688的API权限&#xff0c;并获取ac…

【开源】基于Vue+SpringBoot的河南软件客服系统

文末获取源码&#xff0c;项目编号&#xff1a; S 067 。 \color{red}{文末获取源码&#xff0c;项目编号&#xff1a;S067。} 文末获取源码&#xff0c;项目编号&#xff1a;S067。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统管理人员2.2 业务操作人员 三、…

uniapp 云打包 生成安卓证书文件

现在使用uniapp来开发小程序&#xff0c;H5&#xff0c;APP越来越多了&#xff0c;目前开发了一款APP&#xff0c;使用的也是uniapp。在此记录下用uniapp开发app云打包时约到的一些问题吧。 前因是我司安卓同学休产假&#xff0c;像云打包时需要的证书文件只能自己动手来搞。看…

Avaya Aura Device Services 任意文件上传漏洞复现

0x01 产品简介 Avaya Aura Device Services是美国Avaya公司的一个应用软件。提供一个管理 Avaya 端点功能。 0x02 漏洞概述 Avaya Aura Device Services 系统PhoneBackup接口处存在任意文件上传漏洞&#xff0c;攻击者可绕过验证上传任意文件获取服务器权限。 0x03 影响范围…

使用Jmeter进行http接口测试

前言&#xff1a; 本文主要针对http接口进行测试&#xff0c;使用Jmeter工具实现。 Jmter工具设计之初是用于做性能测试的&#xff0c;它在实现对各种接口的调用方面已经做的比较成熟&#xff0c;因此&#xff0c;本次直接使用Jmeter工具来完成对Http接口的测试。 一、开发接口…