【深度挖掘Java性能调优】「底层技术原理体系」深入探索Java服务器性能监控Metrics框架的实现原理分析(Counter篇)

目录

  • 前提概要
    • 监控工作可以分为四个部分
  • 监控开发任务
    • Metrics中的基础数据类型
      • 计数器(Counter)
        • 统计 API 访问中异常(1000/1500)的次数
        • 统计 API 的调用量
        • 统计特定事件发生的次数
        • Counter的底层原理
          • 基础 (`Base`) 计数器
          • 单元 (`Cell`) 数组
            • 简单的源码案例
          • Counter分析总结
            • 从CPU和内存角度去分析资源开销

前提概要

对于后台服务而言,除了保证每个功能的正常工作,我们还需要了解服务的运行情况,包括机器的物理性能(例如线程数、文件句柄数、内存占用大小、GC时间等)以及业务性能(例如关键流程通过率、QPS以及响应时间等)。目前,常用的做法是通过定义、收集和展示一系列指标(metrics)来完成对后台服务的监控。

监控工作可以分为四个部分

根据以下这四个部分,我们能够完成对后台服务的监控工作,从而能够及时了解和处理服务的运行情况,优化性能,提供更好的用户体验,并确保服务的可靠性和稳定性。
在这里插入图片描述

  • 定义监控数据的产生:我们需要明确定义要监控的数据,包括哪些指标和数据需要收集和监控,以满足监控需求。这可以包括硬件资源利用率、服务的核心性能指标、业务处理的成功率等。

  • 定义监控数据收集的规则:我们需要定义如何收集和存储监控数据。这可能涉及到在代码中嵌入采集指标的逻辑,使用监控代理或导入外部监控系统等方式。关键是确定监控数据的数据源,以及数据如何采集、存储和处理。

  • 数据监控数据的展现形式:需要将收集到的监控数据进行可视化展示,以便更好地理解和分析。这可以包括创建仪表盘、图表、报表或使用专业的监控系统来呈现监控数据,让监控数据更易于理解和分析。

  • 根据监控数据进行报警:根据监控数据设置报警规则,以便在出现异常情况时及时提醒相关人员。这可以通过阈值设置、异常模式识别或使用专业的报警系统来实现。及时的报警能够帮助快速响应和解决问题,确保服务的稳定性和可靠性。

监控开发任务

接下来将逐步介绍如何在Java服务中接入监控服务,我们将从监控数据的产生开始。在本文中,我们将主要基于当前流行的度量框架 codahale.metrics 来进行介绍。

通过引入此依赖项,您可以使用 codahale.metrics 框架中提供的各种功能和特性进行应用程序的度量和监控。

<dependencies><dependency><groupId>com.codahale.metrics</groupId><artifactId>metrics-core</artifactId><version>x.y.z</version></dependency>
</dependencies>

在接下来我们将指导您如何使用 codahale.metrics 库来定义和收集监控数据,展示和分析指标,并根据数据设置报警规则等。codahale.metrics 提供了丰富的功能和灵活的API,可以轻松地与您的Java服务集成,帮助您监控和优化服务的性能、可靠性和稳定性。

Metrics中的基础数据类型

在谈论监控数据的产生时,我们首先需要了解监控库中最常用的三种数据类型,它们分别是:计数器(Counter)、量规(Gauge)和直方图(Histogram)。几乎所有的 Java 监控库都包含了这三种数据类型的实现。

计数器(Counter)

计数器用于记录一个累加值,它表示一个增加或减少的计数。可以通过 inc() 方法增加计数器的值,也可以通过 dec() 方法减少计数器的值。计数器可以用于统计请求次数、错误次数等离散的事件计数。

列举的三种需求场景,可以使用 com.codahale.metrics(或其他类似的监控库)中的不同数据类型来实现。

统计 API 访问中异常(1000/1500)的次数

使用计数器(Counter)来实现。在每次 API 请求中,当发生异常(如 400 或 500 错误)时,通过 inc() 方法将计数器值增加1。

Counter apiErrorCounter = metricRegistry.counter("api.error.counter");
// 在 API 请求处理中,当发生异常时,调用以下代码
apiErrorCounter.inc();
统计 API 的调用量

使用计数器(Counter)来实现。在每次 API 请求时,通过 inc() 方法增加计数器的值。

Counter apiCallCounter = metricRegistry.counter("api.call.counter");
// 在每个 API 请求处理中,调用以下代码
apiCallCounter.inc();
统计特定事件发生的次数

使用计数器(Counter)来记录特定事件发生的次数。在事件发生时,通过 inc() 方法将计数器值增加1。

Counter eventCounter = metricRegistry.counter("event.counter");
// 在特定事件发生时,调用以下代码
eventCounter.inc();

以上示例展示了如何使用计数器来统计异常次数、API 调用量和特定事件发生的次数。可以根据具体需求给计数器命名并使用相应的记录代码。通过监控库提供的方法,可以简单快速地进行数据统计和监控,从而更好地了解和管理应用程序的行为。

Counter的底层原理

Counter 的底层实现主要通过(基础 (Base) 计数器)和(单元 (Cell) 数组)来保证自增的原子性和性能。

com.codahale.metrics.Counter 的源码中,每个 Counter 对象由两部分组成,这是一种称为 “Striped64” 的机制,它是针对高并发情况下的性能优化。

基础 (Base) 计数器

Base 计数器是一个 volatile long 类型的字段,用于存储计数器的初始值及其当前值。它用于低并发情况下对计数进行快速的自增和获取操作。

单元 (Cell) 数组

Cellvolatile long 类型的数组,每个单元内部维护一个计数器的增量值。为了处理高并发情况下的并发访问,Cell 数组采用了分段锁(CAS 操作)的方式,将计数器的自增操作分散到多个单元上。每个线程独占一个单元,当多个线程访问不同的单元时,它们之间不会发生竞争,可以保证并发访问时的性能。

简单的源码案例

通过这些策略和机制的组合,Counter 在具有竞争的情况下保持了较高的性能,同时也考虑了内存消耗的控制,使得其在高并发场景下能够有效地进行计数操作。

public class Counter {transient volatile int busy;transient volatile long base;transient volatile Cell[] cells;public void inc(long n) {long b;if(cells == null || !casBase(b=base, b+n)) {//使用cells进行计算}}public long sum() {long sum = base;Cell[] as = cells;if (as != null) {int n = as.length;for (int i = 0; i < n; ++i) {Cell a = as[i];if (a != null)sum += a.value;}}	return sum;}
}

基本的执行流程图:
在这里插入图片描述

Counter分析总结

Counter 的底层实现使用了基础(Base)和单元(Cell)来存储计数值。在高并发情况下,线程会针对不同的 Cell 进行自增操作,从而避免了竞争,减少了资源争用。而在低并发情况下,通过直接对 Base 进行自增操作,避免了锁的开销,提高了性能,也保证了 Counter 的高性能和并发性能。
在这里插入图片描述
这种基于 BaseCell 的实现方式能够平衡高并发和低并发情况下的性能需求,确保了 Counter 的自增操作的原子性和并发性能。

从CPU和内存角度去分析资源开销

对于有竞争的情况,Counter 使用自旋锁来进行同步,这意味着线程会在一个忙等待的循环中等待竞争解决。这种自旋锁的方式避免了线程上下文切换的开销,并且消耗的 CPU 时间较少,从而提高了性能。

为了避免过多使用内存,当单元数组的数量超过 CPU 核心数时,Counter 将不再扩展单元数组的大小,而是保持不变。这样可以避免过多的内存消耗,并具有更好的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/214133.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【华为数据之道学习笔记】2-建立企业级数据综合治理体系

数据作为一种新的生产要素&#xff0c;在企业构筑竞争优势的过程中起着重要作用&#xff0c;企业应将数据作为一种战略资产进行管理。数据从业务中产生&#xff0c;在IT系统中承载&#xff0c;要对数据进行有效治理&#xff0c;需要业务充分参与&#xff0c;IT系统确保遵从&…

mmdetection里的测速脚本

由于大论文里需要对各个算法进行测速&#xff0c;因此抛开官方文档的使用说明&#xff0c;记录一下我是怎么使用mmdetection里的脚本进行测速的。 mmdetection版本&#xff1a;2.23.0 一、新版本benchmark.py&#xff08;需要分布式&#xff09; 打开tools/analysis_tools/b…

xml文本转Java对象

Java对象转String public static String toData(Object object) throws Exception {JAXBContext jc JAXBContext.newInstance(object.getClass());Marshaller m jc.createMarshaller();StringWriter output new StringWriter(2048);m.marshal(object, output);String data …

C# 任务并行类库Parallel调用示例

写在前面 Task Parallel Library 是微软.NET框架基础类库&#xff08;BCL&#xff09;中的一个&#xff0c;主要目的是为了简化并行编程&#xff0c;可以实现在不同的处理器上并行处理不同任务&#xff0c;以提升运行效率。Parallel常用的方法有For/ForEach/Invoke三个静态方法…

如何确认网站是否有漏洞,如何找出网站存在的漏洞,找到漏洞该如何处理

如何确认网站或者服务器是否有漏洞 判断一个网站是否是存在漏洞的方法&#xff1a; 1.可以借助德迅云安全漏洞扫描功能来检查漏洞。 2.打开德迅云安全首页&#xff0c;点击最上面导航栏中的“安全产品”。 3.滑到“漏洞扫描”&#xff0c;选择“产品价格”服务。 4.选择您需…

python源码,在线读取传奇列表,并解析为需要的JSON格式

python源码&#xff0c;在线读取传奇列表&#xff0c;并解析为需要的JSON格式 [Server] ; 使用“/”字符分开颜色&#xff0c;也可以不使用颜色&#xff0c;支持以前的旧格式&#xff0c;只有标题和服务器标题支持颜色 ; 标题/颜色代码(0-255)|服务器标题/颜色代码(0-255)|服务…

ThinkPHP如何讲链接多个数据库

为什么要使用多个数据库 数据分片&#xff1a; 当数据量非常大时&#xff0c;可能需要将数据分布在不同的数据库中&#xff0c;以提高查询性能。这被称为数据分片&#xff0c;其中不同的数据库负责存储不同范围的数据。 业务分离&#xff1a; 有时&#xff0c;一个大型项目可…

GPT-Crawler一键爬虫构建GPTs知识库

GPT-Crawler一键爬虫构建GPTs知识库 写在最前面安装node.js安装GPT-Crawler启动爬虫结合 OpenAI自定义 assistant自定义 GPTs&#xff08;笔者用的这个&#xff09; 总结 写在最前面 GPT-Crawler一键爬虫构建GPTs知识库 能够爬取网站数据&#xff0c;构建GPTs的知识库&#xf…

nginx多端口部署

1.配置nginx.conf文件 有几个端口需要部署就写几个server&#xff0c;我这里只部署了两个端口分别为80和81端口&#xff0c;所以有两个server文件。80端口项目入口在根目录的test文件中&#xff0c;81端口项目入口在根目录的test1文件夹中。 2.准备项目文件html文件 在/test1…

电脑出现这些现象,说明你的固态硬盘要坏了

与传统机械硬盘&#xff08;HDD&#xff09;相比&#xff0c;固态硬盘&#xff08;SSD&#xff09;速度更快、更稳定、功耗更低。但固态硬盘并不是完美无瑕的&#xff0c;由于颗粒写入机制&#xff0c;可能会在七到十年的预期寿命之前出现故障。所以用户最好为最终故障做好准备…

SQL之string的使用与模拟实现

SQL之string的使用与模拟实现 1.官方库中string类的使用接口1.1 工具网站搜索string类的使用2.2string类的常用接口说明 2.模拟实现重要/常用的成员函数接口2.1 准备工作2.1.1. 解决命名冲突2.1.2. 成员变量2.1.3. 默认成员函数——构造函数/拷贝构造函数/析构函数2.1.4赋值运算…

12.9_黑马数据结构与算法笔记Java

目录 057 多路递归 e03 杨辉三角2 057 多路递归 e03 杨辉三角3 058 链表 e01 反转单向链表1 058 链表 e01 反转单向链表2 058 链表 e01 反转单向链表3 递归 058 链表 e01 反转单向链表4 058 链表 e01 反转单向链表5 058 链表 e02 根据值删除节点1 058 链表 e02 根据值…

【动手学深度学习】(十一)池化层+LeNet

文章目录 一、池化层1.理论知识2.代码 二、LeNet1.理论知识2.代码实现 【相关总结】nn.MaxPool2d() 卷积层对位置比较敏感 一、池化层 1.理论知识 二维最大池化 填充、步幅和多个通道 池化层与卷积层类似&#xff0c;都具有填充和步幅没有可学习的参数在每个输入通道应用池…

【Kubernetes】四层代理Service

Service四层代理 一、Service概念原理1.1、为什么要有Service1.2、Service概述1.3、工作原理1.4、三类IP地址【1】Node Network&#xff08;节点网络&#xff09;【2】Pod network&#xff08;pod 网络&#xff09;【3】Cluster Network&#xff08;服务网络&#xff09; 二、S…

基于Springboot的校园失物招领系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的校园失物招领系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…

微信小程序 -- ios 底部小黑条样式问题

问题&#xff1a; 如图&#xff0c;ios有的机型底部伪home键会显示在按钮之上&#xff0c;导致点击按钮的时候误触 解决&#xff1a; App.vue <script>export default {wx.getSystemInfo({success: res > {let bottomHeight res.screenHeight - res.safeArea.bott…

准确!!!在 CentOS 8 上配置 PostgreSQL 14 的主从复制

在 CentOS 8 上配置 PostgreSQL 14 的主从复制&#xff0c;并设置 WAL 归档到特定路径 /home/postgres/archive 的步骤如下&#xff1a; 主服务器配置&#xff08;主机&#xff09; 配置 PostgreSQL&#xff1a; 编辑 postgresql.conf 文件&#xff1a; vim /data/postgres/p…

什么是呼叫中心的语音通道?呼叫中心语音线路有几种?

什么是呼叫中心的语音通道&#xff1f; 呼叫中心的语音通道是指在呼叫中心中使用的语音信号传输通道&#xff0c;它是呼叫中心中至关重要的一部分&#xff0c;负责将客户的语音信息传递给客服代表&#xff0c;以及将客服代表的语音信息传递给客户。在呼叫中心的运营中&#xf…

C语言——字符函数和字符串函数(一)

&#x1f4dd;前言&#xff1a; 这篇文章对我最近学习的有关字符串的函数做一个总结和整理&#xff0c;主要讲解字符函数和字符串函数&#xff08;strlen&#xff0c;strcpy和strncpy&#xff0c;strcat和strncat&#xff09;的使用方法&#xff0c;使用场景和一些注意事项&…

记录 | vscode pyhton c++调试launch.json配置

下面提供 vscode 中 python 和 c 调试配置的 launch.json (好用&#xff0c;已用好几年&#xff0c;建议收藏) {// 使用 IntelliSense 了解相关属性。 // 悬停以查看现有属性的描述。// 欲了解更多信息&#xff0c;请访问: https://go.microsoft.com/fwlink/?linkid830387&qu…