【Matlab】如何将二阶线性微分方程进行Laplace变换得到传递函数

二阶线性微分方程进行Laplace变换

  • 前言
  • 正文
  • 代码实现

前言

二阶线性微分方程:
一个二阶线性微分方程通常可以写成如下形式:
y ′ ′ ( t ) + p ( t ) y ′ ( t ) + q ( t ) y ( t ) = f ( t ) y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=f(t) y′′(t)+p(t)y(t)+q(t)y(t)=f(t)

其中, y ( t ) y(t) y(t) 是未知函数, y ′ ( t ) y^{\prime}(t) y(t) y ′ ′ ( t ) y^{\prime \prime}(t) y′′(t) 分别是它的一阶和二阶导数。 p ( t ) 、 q ( t ) p(t) 、 q(t) p(t)q(t) f ( t ) f(t) f(t) 是给定的函数,它们分别表示一阶导数的系数、二阶导数的系数和非齐次项。这是一个线性微分方程,因为未知函数及其导数的次数最高为 1 。

解决这种微分方程的目标是找到一个函数 y ( t ) y(t) y(t) 满足方程,并且满足一些初值或边界条件。

传递函数:
传递函数是一个表示线性时不变系统输入和输出关系的数学表达式。对于一个线性时不变系统,输入信号 u ( t ) u(t) u(t) 和输出信号 y ( t ) y(t) y(t) 之间的关系可以通过传递函数 H ( s ) H(s) H(s) 描述,其中 s s s 是复变量。传递函数通常表示为:
H ( s ) = Y ( s ) U ( s ) H(s)=\frac{Y(s)}{U(s)} H(s)=U(s)Y(s)

其中, Y ( s ) Y(s) Y(s) 是输出信号的 Laplace 变换, U ( s ) U(s) U(s) 是输入信号的 Laplace 变换。传递函数描述了系统对不同频率的输入信号的响应。

在频域中,传递函数可以分解为幅度和相位。这使得传递函数成为分析和设计线性时不变系统的有力工具。

在控制工程和信号处理领域,传递函数通常用于分析系统的稳定性、响应特性以及进行控制器设计。
在这里插入图片描述

正文

对于给定的二阶微分方程:
y ′ ′ ( t ) + ( 1 + t 2 ) y ′ ( t ) + e t y ( t ) = sin ⁡ ( t ) y^{\prime \prime}(t)+\left(1+t^2\right) y^{\prime}(t)+e^t y(t)=\sin (t) y′′(t)+(1+t2)y(t)+ety(t)=sin(t)
将二阶线性微分方程转化为传递函数通常需要进行 Laplace 变换。假设输入信号是 u ( t ) u(t) u(t) ,输出信号是 y ( t ) y(t) y(t) ,二阶微分方程可以表示为:
y ′ ′ ( t ) + ( 1 + t 2 ) y ′ ( t ) + e t y ( t ) = sin ⁡ ( t ) y^{\prime \prime}(t)+\left(1+t^2\right) y^{\prime}(t)+e^t y(t)=\sin (t) y′′(t)+(1+t2)y(t)+ety(t)=sin(t)

首先,我们对整个方程进行 Laplace 变换:
L { y ′ ′ ( t ) } + ( 1 + t 2 ) L { y ′ ( t ) } + e t L { y ( t ) } = L { sin ⁡ ( t ) } \mathcal{L}\left\{y^{\prime \prime}(t)\right\}+\left(1+t^2\right) \mathcal{L}\left\{y^{\prime}(t)\right\}+e^t \mathcal{L}\{y(t)\}=\mathcal{L}\{\sin (t)\} L{y′′(t)}+(1+t2)L{y(t)}+etL{y(t)}=L{sin(t)}

在 Laplace 变换中,导数的变换规则为:
L { y ′ ( t ) } = s Y ( s ) − y ( 0 ) L { y ′ ′ ( t ) } = s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) \begin{aligned} & \mathcal{L}\left\{y^{\prime}(t)\right\}=s Y(s)-y(0) \\ & \mathcal{L}\left\{y^{\prime \prime}(t)\right\}=s^2 Y(s)-s y(0)-y^{\prime}(0) \end{aligned} L{y(t)}=sY(s)y(0)L{y′′(t)}=s2Y(s)sy(0)y(0)

其中, Y ( s ) Y(s) Y(s) 是输出信号 y ( t ) y(t) y(t) 的 Laplace 变换。
代入这些变换,我们得到:
s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) + ( 1 + t 2 ) ( s Y ( s ) − y ( 0 ) ) + e t Y ( s ) = 1 s 2 + 1 s^2 Y(s)-s y(0)-y^{\prime}(0)+\left(1+t^2\right)(s Y(s)-y(0))+e^t Y(s)=\frac{1}{s^2+1} s2Y(s)sy(0)y(0)+(1+t2)(sY(s)y(0))+etY(s)=s2+11

整理上述方程,得到传递函数的形式:
Y ( s ) U ( s ) = 1 s 2 + 1 + ( 1 + t 2 ) s + e t \frac{Y(s)}{U(s)}=\frac{1}{s^2+1+\left(1+t^2\right) s+e^t} U(s)Y(s)=s2+1+(1+t2)s+et1

其中, U ( s ) U(s) U(s) 是输入信号 u ( t ) u(t) u(t) 的 Laplace 变换。

因此,通过 Laplace 变换,得到传递函数:
H ( s ) = Y ( s ) U ( s ) = 1 s 2 + 1 + ( 1 + t 2 ) s + e t H(s)=\frac{Y(s)}{U(s)}=\frac{1}{s^2+1+\left(1+t^2\right) s+e^t} H(s)=U(s)Y(s)=s2+1+(1+t2)s+et1

这里 Y ( s ) Y(s) Y(s) 是输出信号 y ( t ) y(t) y(t) 的 Laplace 变换, U ( s ) U(s) U(s) 是输入信号 u ( t ) u(t) u(t) 的 Laplace 变换。

由于涉及到非常数的系数 t t t ,所以传递函数也包含 t t t 。在 MATLAB 中,通过 'ilaplace’函数进行逆变换,可以得到一个包含 t t t 的表达式。

上述 MATLAB 代码示例中,使用 'ilaplace - 函数逆变换,得到的传递函数 H ( t ) H(t) H(t) 将包含 t t t ,具体的表达式将在 MATLAB 中显示。因此,您可以运行上述代码,查看输出结果。

代码实现

syms s t% 定义 Laplace 变换
Y = laplace('D2y + (1 + t^2)*Dy + exp(t)*y - sin(t)', t, s);% 逆变换得到传递函数
H = ilaplace(1 / (s^2 + 1 + (1 + t^2)*s + exp(t)), s, t);% 显示传递函数
disp('传递函数:');
disp(H);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/215983.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

selenium自动化(中)

显式等待与隐式等待 简介 在实际工作中等待机制可以保证代码的稳定性,保证代码不会受网速、电脑性能等条件的约束。 等待就是当运行代码时,如果页面的渲染速度跟不上代码的运行速度,就需要人为的去限制代码执行的速度。 在做 Web 自动化时…

ArkUI组件

目录 一、概述 声明式UI 应用模型 二、常用组件 1、Image:图片展示组件 示例 配置控制授权申请 2、Text:文本显示组件 示例 3、TextInput:文本输入组件 示例 4、Button:按钮组件 5、Slider:滑动条组件 …

【vue实战项目】通用管理系统:信息列表,信息的编辑和删除

本文为博主的vue实战小项目系列中的第七篇,很适合后端或者才入门的小伙伴看,一个前端项目从0到1的保姆级教学。前面的内容: 【vue实战项目】通用管理系统:登录页-CSDN博客 【vue实战项目】通用管理系统:封装token操作…

19、命令模式(Command Pattern,不常用)

命令模式,将一个请求封装为一个对象(命令),使发出请求的责任和执行请求的责任分割开,有效降低系统的耦合度。这样两者之间通过命令对象进行沟通,这样方便将命令对象进行储存、传递、调用、增加与管理。命令…

10基于matlab的悬臂梁四节点/八节点四边形单元有限元编程(平面单元)

悬臂梁,有限元编程。基于matlab的悬臂梁四节点/八节点四边形单元有限元编程(平面单元),程序有详细注解,可根据需要更改参数,包括长度、截面宽度和高度、密度、泊松比、均布力、集中力、单元数量等。需要就拍…

数字化转型对企业有什么好处?

引言 数字化转型已经成为当今商业领域中的一股强大力量,它不仅仅是简单的技术更新,更是企业发展的重要战略转变。随着科技的迅猛发展和全球化竞争的加剧,企业们正在积极探索如何将数字化的力量融入到他们的运营和战略中。 数字化转型不仅是传…

智能优化算法应用:基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.布谷鸟算法4.实验参数设定5.算法结果6.参考文…

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现BWO-CNN-B…

亚马逊云科技:向量数据存储在生成式人工智能应用程序中的作用

生成式人工智能深受大众喜爱,并且由于具备回答问题、写故事、创作艺术品甚至生成代码的功能,推动了行业的转变,那么如何才能在自己的企业中充分地利用生成式人工智能等应运而生问题。许多客户已经积累了大量特定领域的数据(财务记…

Kubernetes(k8s)集群部署----->超详细

Kubernetes(k8s)集群部署----->超详细 一、资源准备二、安装准备2.1 主机环境设置2.1.1 关闭操作系统防火墙、selinux2.1.2 关闭swap交换分区2.1.3 允许iptables检测桥接流量(可选) 2.2 安装Docker环境2.3 安装Kubeadm…

『npm』一条命令快速配置npm淘宝国内镜像

📣读完这篇文章里你能收获到 一条命令快速切换至淘宝镜像恢复官方镜像 文章目录 一、设置淘宝镜像源二、恢复官方镜像源三、查看当前使用的镜像 一、设置淘宝镜像源 npm config set registry https://registry.npm.taobao.org服务器建议全局设置 sudo npm config…

Error: Cannot find module ‘E:\Workspace_zwf\mall\build\webpack.dev.conf.js‘

执行:npm run dev E:\Workspace_zwf\zengwenfeng-master>npm run dev> mall-app-web1.0.0 dev E:\Workspace_zwf\zengwenfeng-master > webpack-dev-server --inline --progress --config build/webpack.dev.conf.jsinternal/modules/cjs/loader.js:983thr…

9:00面试,9:06就出来了,问的问题有点变态。。。

从小厂出来,没想到在另一家公司又寄了。 到这家公司开始上班,加班是每天必不可少的,看在钱给的比较多的份上,就不太计较了。没想到12月一纸通知,所有人不准加班,加班费不仅没有了,薪资还要降40…

阿里云国际版无法远程连接Windows服务器的排查方法

如果您遇到紧急情况,需要尽快登录Windows实例,请参见以下操作步骤,先检查ECS实例的状态,然后通过云助手向Windows实例发送命令或通过VNC登录实例,具体步骤如下: 步骤一:检查ECS实例状态 无论何…

【ARM Trace32(劳特巴赫) 使用介绍 13 -- Trace32 断点 Break 命令篇】

文章目录 1. Break.Set1.1 TRACE32 Break1.1.1 Break命令控制CPU的暂停1.2 Break.Set 设置断点1.2.1 Trace32 程序断点1.2.2 读写断点1.2.2.1 变量被改写为特定值触发halt1.2.2.2 设定非值触发halt1.2.2.4 变量被特定函数改写触发halt1.2.3 使用C/C++语法设置断点条件1.2.4 使用…

[NAND Flash 2.1] NAND Flash 闪存改变了现代生活

依公知及经验整理,原创保护,禁止转载。 专栏 《深入理解NAND Flash》 <<<< 返回总目录 <<<< ​ 1989年NAND闪存面世了,它曾经且正在改变了我们的日常生活。 NAND 闪存发明之所以伟大,是因为,有了这项颠覆性的发明,才有了我们现如今用的智能手机…

(第68天)DBCA 克隆 PDB

介绍 在前面课程我们讲过使用 DBCA 创建数据库以及搭建 DataGuard 等功能,在多租户这章节,要讲下如何使用 DBCA 克隆 PDB。 18C 开始支持使用 DBCA 在本地 CDB 中克隆 PDB19C 升级支持使用 DBCA 克隆 PDB 到远端 CDB 中19C 升级支持使用 DBCA 重定向迁移 PDB 到远端 CDB 中本…

Kotlin+Apache HttpClient+代理服务器=高效的eBay图片爬虫

引入 你是否想过用Kotlin来编写爬虫程序&#xff1f;你是否想过用Apache HttpClient来处理HTTP请求和响应&#xff1f;你是否想过用代理服务器来绕过反爬措施&#xff1f;如果你的答案是肯定的&#xff0c;那么本文将为你介绍一种高效的eBay图片爬虫的实现方式&#xff0c;让你…

ISP去噪(2)_np 噪声模型

#灵感# ISP 中的去噪&#xff0c;都需要依赖一个噪声模型。很多平台上使用采集的raw进行calibration&#xff0c;可以输出这个模型&#xff0c;通常称为 noise profile。 名词解释&#xff1a; Noise profile 似乎可以翻译成“噪声档案”&#xff0c;其含义是某个噪声源&…

Verilog基础:寄存器输出的两种风格

相关文章 Verilog基础https://blog.csdn.net/weixin_45791458/category_12263729.html?spm1001.2014.3001.5482 Verilog中的寄存器操作一般指的是那些对时钟沿敏感而且使用非阻塞赋值的操作。例如状态机中的状态转移&#xff0c;实际上就是一种寄存器操作&#xff0c;因为这相…