【面试经典150 | 二叉树】从前序与中序遍历序列构造二叉树

文章目录

  • 写在前面
  • Tag
  • 题目来源
  • 题目解读
  • 解题思路
    • 方法一:递归
  • 写在最后

写在前面

本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更……

专栏内容以分析题目为主,并附带一些对于本题涉及到的数据结构等内容进行回顾与总结,文章结构大致如下,部分内容会有增删:

  • Tag:介绍本题牵涉到的知识点、数据结构;
  • 题目来源:贴上题目的链接,方便大家查找题目并完成练习;
  • 题目解读:复述题目(确保自己真的理解题目意思),并强调一些题目重点信息;
  • 解题思路:介绍一些解题思路,每种解题思路包括思路讲解、实现代码以及复杂度分析;
  • 知识回忆:针对今天介绍的题目中的重点内容、数据结构进行回顾总结。

Tag

【递归】【迭代】【二叉树】


题目来源

105. 从前序与中序遍历序列构造二叉树


题目解读

给你一棵二叉树的前序和中序遍历得到的两个数组,现在根据两个数组来构造二叉树。


解题思路

二叉树问题都可以使用递归和迭代两种方法来解决。

方法一:递归

前言

首先回忆一下二叉树的前序和中序遍历过程。

二叉树的前序遍历过程:

  • 先遍历根节点;
  • 接着递归遍历左子树;
  • 最后递归遍历右子树。

二叉树的中序遍历过程:

  • 先递归遍历左子树;
  • 接着遍历根节点;
  • 最后递归遍历右子树。

在「递归」遍历子树的过程中,我们也是将子树看成是一棵全新的树,按照相应的顺序进行遍历。

思路

根据上述提到的前序遍历顺序可以将 preorder 数组分为三部分,根、左子树、右子树。目前仅通过先序遍历的结果数组可以确定的是根节点值为 3。

中序遍历的结果数组可以分为三部分:左子树、根、右子树。

只要我们在中序遍历的结果数组中定位出根节点,那么就可以分别知道左子树和右子树的数目,进而可以定位出左、右子树的边界即在数组中的范围。这样就知道了左子树的前序遍历和中序遍历结果,以及右子树的前序遍历和中序遍历结果,就可以递归地对构造出左子树和右子树,再将这两棵子树接到根节点的左右位置。

在定位根节点的时候,利用哈希表来记录各个节点在数组中的位置,因为题目中事先说明了二叉树中节点的值不会出重复。哈希表中的键表示一个元素的值,值表示该键表示的值在中序遍历数组中的位置。

算法

class Solution {
private:int pre_idx;unordered_map<int, int> index_map;
public:TreeNode* slove(const vector<int>& preorder, const vector<int>& inorder, int in_left, int in_right) {if (in_left > in_right) {return nullptr;}// 前序遍历中的根节点int root_val = preorder[pre_idx++];// 建立根节点TreeNode* root = new TreeNode(root_val);// 在中序遍历中定位根节点int idx = index_map[root_val];// 递归构建左子树,需要左子树的先序、中序的边界root->left = slove(preorder, inorder, in_left, idx - 1);root->right = slove(preorder, inorder, idx + 1, in_right);return root;}TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {int n = inorder.size();pre_idx = 0;// 构建哈希表,快速定位根节点for (int i = 0; i < n; ++i) {index_map[inorder[i]] = i;}return slove(preorder, inorder, 0, n-1);}
};

复杂度分析

时间复杂度: O ( n ) O(n) O(n),其中 n n n 是树中的节点个数。

空间复杂度: O ( n ) O(n) O(n)。返回的答案需要 O ( n ) O(n) O(n) 空间,通过不算作占用额外的空间;哈希表占用的额外空间为 O ( n ) O(n) O(n);递归的栈空间最大为 O ( n ) O(n) O(n)。因此,总的空间复杂度为 O ( n ) O(n) O(n)


写在最后

如果您发现文章有任何错误或者对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度的方法,欢迎评论区交流。

最后,感谢您的阅读,如果有所收获的话可以给我点一个 👍 哦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/215993.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT作业4

实现一个闹钟&#xff0c;当输入时间后&#xff0c;点击启动到达时间后循环播报三遍&#xff0c;便签内容 头文件&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTextToSpeech> //文本转语言类 #include <QTimerEvent> //定…

Android : BottomNavigation底部导航_简单应用

示例图&#xff1a; 1.先创建底部导航需要的图片 res → New → Vector Asset 创建三个矢量图 图片1 baseline_home.xml <vector android:height"24dp" android:tint"#000000"android:viewportHeight"24" android:viewportWidth"24…

Axure电商产品移动端交互原型,移动端高保真Axure原型图(RP源文件手机app界面UI设计模板)

本作品是一套 Axure8 高保真移动端电商APP产品原型模板&#xff0c;包含了用户中心、会员成长、优惠券、积分、互动社区、运营推广、内容推荐、商品展示、订单流程、订单管理、售后及服务等完整的电商体系功能架构和业务流程。 本模板由一百三十多个界面上千个交互元件及事件组…

基于Qt的蓝牙Bluetooth在ubuntu实现模拟

​# 前言 Qt 官方提供了蓝牙的相关类和 API 函数,也提供了相关的例程给我们参考。笔者根据 Qt官方的例程编写出适合我们 Ubuntu 和 gec6818开发板的例程。注意 Windows 上不能使用 Qt 的蓝牙例程,因为底层需要有 BlueZ协议栈,而 Windows 没有。Windows 可能需要去移植。笔者…

数据挖掘目标(Kaggle Titanic 生存测试)

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns1.数据导入 In [2]: train_data pd.read_csv(r../老师文件/train.csv) test_data pd.read_csv(r../老师文件/test.csv) labels pd.read_csv(r../老师文件/label.csv)[Su…

HTML中常用表单元素使用(详解!)

Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍HTML中常用表单元素使用以及部分理论知识 &#x1f349;欢迎点赞 &#x1f44d; 收藏 ⭐留言评论 &#x1f4dd;私信必回哟&#x1f601; &#x1f349;博主收将持续更新学习记录获&#xff0c;友友们有任何问题可以在评论区留言 …

CentOS 7 源码部署 Nginx

文章目录 1. 概述2. 部署示例2.1 下载和解压 Nginx 源码2.2 安装编译依赖包2.3 编译和安装2.4 启动 Nginx2.5 配置防火墙2.6 设置 Nginx 为系统服务2.7 配置访问 3. 扩展知识 1. 概述 Nginx 是一款高性能的开源 Web 服务器软件&#xff0c;广泛应用于互联网领域。本篇博客将介…

【Matlab】如何将二阶线性微分方程进行Laplace变换得到传递函数

二阶线性微分方程进行Laplace变换 前言正文代码实现 前言 二阶线性微分方程: 一个二阶线性微分方程通常可以写成如下形式: y ′ ′ ( t ) p ( t ) y ′ ( t ) q ( t ) y ( t ) f ( t ) y^{\prime \prime}(t)p(t) y^{\prime}(t)q(t) y(t)f(t) y′′(t)p(t)y′(t)q(t)y(t)f(…

selenium自动化(中)

显式等待与隐式等待 简介 在实际工作中等待机制可以保证代码的稳定性&#xff0c;保证代码不会受网速、电脑性能等条件的约束。 等待就是当运行代码时&#xff0c;如果页面的渲染速度跟不上代码的运行速度&#xff0c;就需要人为的去限制代码执行的速度。 在做 Web 自动化时…

ArkUI组件

目录 一、概述 声明式UI 应用模型 二、常用组件 1、Image&#xff1a;图片展示组件 示例 配置控制授权申请 2、Text&#xff1a;文本显示组件 示例 3、TextInput&#xff1a;文本输入组件 示例 4、Button&#xff1a;按钮组件 5、Slider&#xff1a;滑动条组件 …

【vue实战项目】通用管理系统:信息列表,信息的编辑和删除

本文为博主的vue实战小项目系列中的第七篇&#xff0c;很适合后端或者才入门的小伙伴看&#xff0c;一个前端项目从0到1的保姆级教学。前面的内容&#xff1a; 【vue实战项目】通用管理系统&#xff1a;登录页-CSDN博客 【vue实战项目】通用管理系统&#xff1a;封装token操作…

19、命令模式(Command Pattern,不常用)

命令模式&#xff0c;将一个请求封装为一个对象&#xff08;命令&#xff09;&#xff0c;使发出请求的责任和执行请求的责任分割开&#xff0c;有效降低系统的耦合度。这样两者之间通过命令对象进行沟通&#xff0c;这样方便将命令对象进行储存、传递、调用、增加与管理。命令…

10基于matlab的悬臂梁四节点/八节点四边形单元有限元编程(平面单元)

悬臂梁&#xff0c;有限元编程。基于matlab的悬臂梁四节点/八节点四边形单元有限元编程&#xff08;平面单元&#xff09;&#xff0c;程序有详细注解&#xff0c;可根据需要更改参数&#xff0c;包括长度、截面宽度和高度、密度、泊松比、均布力、集中力、单元数量等。需要就拍…

数字化转型对企业有什么好处?

引言 数字化转型已经成为当今商业领域中的一股强大力量&#xff0c;它不仅仅是简单的技术更新&#xff0c;更是企业发展的重要战略转变。随着科技的迅猛发展和全球化竞争的加剧&#xff0c;企业们正在积极探索如何将数字化的力量融入到他们的运营和战略中。 数字化转型不仅是传…

智能优化算法应用:基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于布谷鸟算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.布谷鸟算法4.实验参数设定5.算法结果6.参考文…

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现BWO-CNN-B…

亚马逊云科技:向量数据存储在生成式人工智能应用程序中的作用

生成式人工智能深受大众喜爱&#xff0c;并且由于具备回答问题、写故事、创作艺术品甚至生成代码的功能&#xff0c;推动了行业的转变&#xff0c;那么如何才能在自己的企业中充分地利用生成式人工智能等应运而生问题。许多客户已经积累了大量特定领域的数据&#xff08;财务记…

Kubernetes(k8s)集群部署----->超详细

Kubernetes&#xff08;k8s&#xff09;集群部署-----&#xff1e;超详细 一、资源准备二、安装准备2.1 主机环境设置2.1.1 关闭操作系统防火墙、selinux2.1.2 关闭swap交换分区2.1.3 允许iptables检测桥接流量&#xff08;可选&#xff09; 2.2 安装Docker环境2.3 安装Kubeadm…

『npm』一条命令快速配置npm淘宝国内镜像

&#x1f4e3;读完这篇文章里你能收获到 一条命令快速切换至淘宝镜像恢复官方镜像 文章目录 一、设置淘宝镜像源二、恢复官方镜像源三、查看当前使用的镜像 一、设置淘宝镜像源 npm config set registry https://registry.npm.taobao.org服务器建议全局设置 sudo npm config…

Error: Cannot find module ‘E:\Workspace_zwf\mall\build\webpack.dev.conf.js‘

执行&#xff1a;npm run dev E:\Workspace_zwf\zengwenfeng-master>npm run dev> mall-app-web1.0.0 dev E:\Workspace_zwf\zengwenfeng-master > webpack-dev-server --inline --progress --config build/webpack.dev.conf.jsinternal/modules/cjs/loader.js:983thr…