遥感深度学习:如何读取TIFF文件和切片成256*256?

博客已同步微信公众号:GIS不要炒茄子
在这里插入图片描述

01 前言

最近打算认真从头开始学习深度学习和遥感结合的相关内容,主要通过Python进行处理。此前用深度学习进行遥感相关的学习一直都是用 tensorflow3.0 框架,但是考虑很多因素我后面打算换用 Pytorch 进行学习。好在tensorflow我只是浅尝辄止,不然还真有点不舍。

02 如何读取TIFF文件

2.1 安装GDAL

读取TIFF文件我们就用GDAL吧,安装稍麻烦。如果通过pip方式无法安装模块,可通过下方链接下载Wheel文件:

https://www.lfd.uci.edu/~gohlke/pythonlibs/#

下载后通过pip install wheel文件绝对路径即可安装。如果想要安装在虚拟环境,需要先进入对应虚拟环境路径activate再进行pip安装。

在这里插入图片描述

2.2 读取TIFF文件

这个就仅仅给出代码吧,其它时间有限自行理解。

一个波段一个波段的读取:

def read_img(img_path):"""该函数用于读取TIFF文件中各个波段数据集:param img_path: TIFF文件路径:return: 多波段数据集(ndarray, [波段数, 行数, 列数])"""# 打开文件ds = gdal.Open(img_path)if not ds:return False# 读取bands = []for band_ix in range(1, ds.RasterCount + 1):band = ds.GetRasterBand(band_ix)band_data = band.ReadAsArray()bands.append(band_data)bands = np.asarray(bands)return bands

当然,一下全部读取也可以:

def read_img(img_path):"""该函数用于读取TIFF文件中各个波段数据集:param img_path: TIFF文件路径:return: 多波段数据集(ndarray, [波段数, 行数, 列数])"""# 打开文件ds = gdal.Open(img_path)if not ds:return Falsebands = ds.ReadAsArray()return bands

03 如何切片?

切片你可以用numpy的 from numpy.lib.stride_tricks import as_strided 自己写(谨慎使用该函数),当然或者完全自己写。但是运行的效率自然无法保证。

这里我们用 skimage 模块的 view_as_windows 函数进行切片,不仅支持高维度切片并且效率非常高。

import numpy as np
from skimage.util import view_as_windowsdef make_chips(ds, window_shape, stride, stacking=False):"""对数据集进行切片处理:param ds::param window_shape: 滑动窗口大小:param stride: 步幅大小:return: 返回切片后的数据"""chips = view_as_windows(ds, window_shape, step=stride)chips = np.squeeze(chips)  # 去除维度上数值为1的所有维度if stacking:chips = np.reshape(chips.shape[0] * chips.shape[1], -1)return chips

使用:

img_paths = glob.glob(os.path.join(in_dir, '**', 'GF2*MSS*.tiff'), recursive=True)
for img_path in img_paths:# 读取data = read_img(img_path)# img_transform = get_transform(img_path)# 切片chips = make_chips(data, (4, 256, 256), 256, False)

data的shape为(4, 6908, 7300),我需要切片为(4,256, 256),那么滑动窗口大小设置为(4, 256, 256),窗口在各个维度上移动的步幅大小这里设置为256(当然你也可以设置为(4, 256,256),即具体指定各个维度上移动的步幅)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/216328.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用HTTP协议在Linux上进行API调用

在Linux系统上使用HTTP协议进行API调用是一种常见的操作,有时候我们需要调用一些外部API来获取数据或者进行自动化操作。下面是一个使用HTTP协议在Linux上进行API调用的代码示例,希望能够帮助你更好地理解这个过程。 首先,我们需要使用curl命…

单臂路由与三层交换机

单臂路由 划分VLAN后同一VLAN的计算机属于同一个广播域,同一VLAN的计算机之间的通信是不成问题的。然而,处于不同VLAN的计算机即使是在同一交换机上,它们之间的通信也必须使用路由器。 图(a)是一种实现VLAN间路由的方…

人工智能学习8(集成学习之xgboost)

编译工具:PyCharm 文章目录 编译工具:PyCharm 集成学习XGBoost(Extreme Gradient Boosting)极端梯度提升树1.最优模型的构建方法XGBoost目标函数案例1:泰坦尼克号案例2:对奥拓集团差评进行正确分类。数据准备:1.第一种…

Redis和MySQL双写一致性实用解析

1、背景 先阐明一下Mysql和Redis的关系:Mysql是数据库,用来持久化数据,一定程度上保证数据的可靠性;Redis是用来当缓存,用来提升数据访问的性能。 关于如何保证Mysql和Redis中的数据一致(即缓存一致性问题…

36V/48V转12V 10A直流降压DC-DC芯片-AH1007

AH1007是一款36V/48V转12V 10A直流降压(DC-DC)芯片,它是一种高性能的降压变换器,常用于工业、汽车和电子设备等领域。 AH1007采用了先进的PWM调制技术和开关电源控制算法,能够高效地将输入电压从36V/48V降低到12V&…

【Anaconda】Ubuntu anaconda使用(新建环境、最小化安装Tensorflow)

Ubuntu anaconda使用(新建环境、最小化安装Tensorflow) 清华源地址: https://pypi.tuna.tsinghua.edu.cn/simplepip安装使用的时候, pip install xxx(库名) -i https://pypi.tuna.tsinghua.edu.cn/simple请先安装好anaconda&am…

无论您用selenium、appium还是playwright都必须使用PO设计模式

随着UI自动化测试工具可选性越来越多,工具也越来越稳定,前几年关于自动化测试架构设计的概念逐渐淡化,但是自动化架构设计中最有用的PO设计模式思想依然需要刚入门自动化测试领域的小白深刻掌握,本文就带大家理解什么是PO设置模式…

fastapi.templating与HTMLResponse

要声明一个模板对象,应将存储html模板的文件夹作为参数提供。在当前工作目录中,我们将创建一个 “templates “目录。 templates Jinja2Templates(directory“templates”) 我们现在要把这个页面的HTML代码渲染成HTMLResponse。让我们修改一下hello()函…

LeetCode:1631. 最小体力消耗路径(SPFA Java)

目录 1631. 最小体力消耗路径 题目描述: 实现代码与解析: BFSDP 原理思路: 1631. 最小体力消耗路径 题目描述: 你准备参加一场远足活动。给你一个二维 rows x columns 的地图 heights ,其中 heights[row][col] 表…

electron命令下载失败,手动安装教程

现象:pnpm i electron, 一直卡在提示错误node install.js 一 、下载需要的electron版本 地址 二、下载完毕,解压压缩包, 进入项目的node_modules/electron文件夹,创建dist文件夹,将下载的zip包里的文件复制到dist…

【详解优先级队列(堆)】

目录 堆的概念 堆的性质 堆的存储方式 堆的创建 堆的向下调整 向下过程(以小堆为例) 向下过程(以大堆为例) 建堆的时间复杂度O(n) 堆的插入与删除 堆的插入 向上调整建堆的时间复杂度O(nlogn) 堆的删除 常见习题 常用接口介绍 PriorityQueue的特性 Pri…

16:00的面试,16:07就出来了,问的问题过于变态了。。。

从小厂出来,没想到在另一家公司又寄了。 到这家公司开始上班,加班是每天必不可少的,看在钱给的比较多的份上,就不太计较了。没想到六月一纸通知,所有人不准加班,加班费不仅没有了,薪资还要降40…

【IDEA】IntelliJ IDEA创建一个Maven项目

在IDEA中创建Maven项目,前提是已经安装配置好Maven环境 。 本文主要使用的是IntelliJ IDEA 2022.2.1 (Community Edition) 1.创建一个新project:File>Project 2.修改Maven配置:File>Settings>搜索maven 创建好的工程如下: src/main…

DNS漫游指南:从网址到IP的奇妙之旅

当用户在浏览器中输入特定网站时发生的整个端到端过程可以参考下图 1*4vb-NMUuYTzYBYUFSuSKLw.png 问题: 什么是 DNS? 答案 → DNS 指的是域名系统(Domain Name System)。DNS 是互联网的目录,将人类可读的域名&#…

Python码上行动系列丛书(由北京大学出版社出版)

前言 Python码上行动系列丛书火热来袭💥💥💥 三册在手,Python全掌握!无论是初学者还是进阶玩家,我们都有你想要的! 让ChatGPT带你轻松入门Python编程,享受编程带来的乐趣&#xff0…

快速准确翻译文件夹名:英文翻译成中文,文件夹批量重命名的技巧

在处理大量文件夹时,可能会遇到要将英文文件夹名翻译成中文的情况。同时也可能要批量重命名这些文件夹。今天一起来看下云炫文件管理器如何快速准确翻译文件夹名,进行批量重命名的技巧。 下图是文件夹名翻译前后的效果图。 英文文件夹名批量翻译成中文…

UE4.27-UE5.1设置打包Android环境

打包Android配置文件 1. 配置打包Android的SDK需求文件位于下面文件中: 2. 指定了对应的SDK环境变量名字以及NDK需求等: UE4.27-UE5.1--脚本自动配置 安装前提 1. 务必关闭虚幻编辑器和Epic Games Launcher,以确保NDK组件的安装或引擎环境…

node.js安装和配置

软件介绍 Node.js是一个免费的、开源的、跨平台的JavaScript运行时环境,允许开发人员在浏览器之外编写命令行工具和服务器端脚本。 Node.js是一个基于Chrome JavaScript运行时建立的一个平台。 Node.js是一个事件驱动I/O服务端JavaScript环境,基于Googl…

排序算法之四:直接选择排序

1.基本思想 每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。 2.直接选择排序 在元素集合array[i]--array[n-1]中选择关键码最大(小)的数据元素 若它不是这组元素中的…

stateflow 之图函数、simulink函数和matlab函数使用及案例分析

目录 前言 1. 图函数graph function 2.simulink function 3.matlab function 4.调用stateflow中的几种函数方式 前言 对于stateflow实际上可以做simulink和matlab的所有任务,可以有matlab的m语言,也可以有simulink的模块,关于几种函数在…