排序的简单理解(上)

1. 排序的概念及引用

1.1 排序的概念

        排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作(按照我们的需求能够有序的将数据信息排列起来)。

        稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持 不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳 定的;否则称为不稳定的(如果一份数据中有多个相同的数据,在经过排序后这几个数据的先后逻辑顺序没有发生改变就称为该算法稳定性强)。

        

        内部排序:数据元素全部放在内存中的排序。

        外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

1.2 常见的排序算法

        我们本次学习主要学习一下四类七种排序算法;

        下文我们将详细的介绍不同的排序算法及实现 

2. 插入排序

2.1 直接插入排序

         直接插入排序是一种简单的插入排序法,其基本思想是: 把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中直到所有的记录插入完为止,得到一个新的有序序列 。实际中我们玩扑克牌时,就用了插入排序的思想

                                                 

2.1.1 详细思路与图解分析

        把n个待排序的元素看成为一个有序表和一个无序表,开始时有序表中只包含一个元素(默认),无序表中包含n-1个元素,排序过程中每次从无序表中取出第一个元素,把它的排序码依次与有序表元素的排序码从后往前一一进行比较,将它插入到有序表中的适当位置,使之成为一个新的有序表。

        以序列:{55, 85, 21, 12, 5} 为例, 图解如下:

        

        红色部分为每轮认定的有序部分,其余颜色为认定的无序部分。绿色标识为每轮遍历的无序序列的位置,将该位置的元素逐一与有序部分进行比较,找到合适的位置进行顺序表的插入操作。 

        代码一:

 public static void insertSort(int[] array){//判断数组为空,无法排序if (array.length <1){return;}for (int i = 1; i < array.length; i++) {//定义待插入位置和待插入的数值int insertIndex = i-1;//arr[i]前面的位置,便于插入int insertValue = array[i];//现将待插入的数值保存到变量中//给insertValue找到待插入的位置//1.insertIndex > 0防止越界//2.insertValue < arr[insertIndex] 说明还未找到待插入的位置,// 还要继续与前面的那个位置进行比较,直到insertValue > arr[insertIndex]//说明找到了要插入的点的索引while (insertIndex >= 0 && insertValue < array[insertIndex]){array[insertIndex+1] = array[insertIndex];insertIndex--;}if (insertIndex != i){//要插入的位置insertindex与刚开始的该元素存放的位置不一样//我们比insertindex位置大,所以要插到他后面,所以加一array[insertIndex+1] = insertValue; //插入}System.out.println("第" + i + "轮: " + Arrays.toString(array));}}

        测试代码如下:

public static void main(String[] args) {int[] array = {55, 85, 21, 12, 5};System.out.println("排序前: " + Arrays.toString(array));insertSort(array);System.out.println("排序后: " + Arrays.toString(array));}

         实现效果如下:

          

        代码二展示(简单易理解):

 public static void instersort(int[] arr){for (int i = 1; i <arr.length ; i++) {int tmp=arr[i];int j = i-1;for (; j>=0 ; j--) {if(arr[j]>tmp){arr[j+1]=arr[j];}else{break;}}arr[j+1]=tmp;}}

        结果展示:

          

2.2.2 分析与总结

/*** 时间复杂度:*    最坏情况下:O(n^2)  5   4   3   2   1*    最好情况下:O(n)   当前数据越有序,排序越快   1  2  3  4  5*    适用于:待排序序列  已经基本上趋于有序了!* 空间复杂度: O(1)* 稳定性:稳定的*/

以下是动图展示:

2.2 希尔排序( 缩小增量排序 )

2.2.1 详细思路与图解分析

        希尔排序法又称缩小增量法

        希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;
  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;

        希尔排序法的基本思想是:把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至 1 时,整个文件恰被分成一组,算法便终止。希尔排序是非稳定排序算法。

        以序列: {8, 9, 1, 7, 2, 3, 5, 6, 4, 0} 为例

1、初始步长gap = length/2 = 5,意味着将整个数组分为了5组,即[8,3],[9,5],[1,6],[7,4],[2,0],对每组进行插入排序,得到序列:{3,5,1,4,0,8,9,6,7,2},可以看到:3,5,4,0这些小元素都被提到前面了

2、缩小增量gap = 5/2 = 2,数组被分为两组,即[3,1,0,9,7],[5,4,8,6,2],对这两组分别进行直接插入排序,可以看到,整个数组的有序程度更进一步了

3、再次缩小增量,gap = 2/2 = 1,此时整个数组为[0,2,1,4,3,5,7,6,9,8],进行一次插入排序,即可实现数组的有序化(仅需要简单微调,而无需大量移动操作)

        代码一实现如下:

public static void shellSort(int[] arr){//设定步长for (int gap = arr.length / 2; gap > 0; gap /= 2){//将数据分为arr.length/gap组,逐个对其所在的组进行插入排序//按照分组一直进行下面的每组直接插入,直到整个元素集合分为一组for (int i = gap; i < arr.length; i++) {//遍历各组中的所有元素,步长为gapint j = i;//每一组的元素个数定义为jint temp = arr[j]; //记录待插入的值while (j - gap >= 0 && temp < arr[j-gap]){//移动arr[j] = arr[j-gap];j -= gap;}//找到位置,进行插入arr[j] = temp;}System.out.println(Arrays.toString(arr));}}

        代码二(较易理解):

    public void straightInsertion(int[] array,int gap) {int len = array.length;for(int i = gap; i < len ; i++) {int count = array[i];int j = i - gap;for( ; j >= 0; j-=gap) {if(count < array[j]) {array[j + gap] = array[j];} else {break;}}array[j + gap] = count;}}public void shellSort(int[] arrary) {int gap = arrary.length;while(gap  > 0) {gap = gap /2;straightInsertion(arrary,gap);}}

          测试代码及结果如下:

 public static void main(String[] args) {int[] arr = {8, 9, 1, 7, 2, 3, 5, 6, 4, 0};System.out.println("排序前: " + Arrays.toString(arr));shellSort(arr);System.out.println("排序后: " + Arrays.toString(arr));}

         

2.2.2 分析与总结

1. 希尔排序是对直接插入排序的优化。
2. 当 gap > 1 时都是预排序,目的是让数组更接近于有序。当 gap == 1 时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
3. 希尔排序的时间复杂度不好计算,因为 gap 的取值方法很多,导致很难去计算,因此在好些书中给出的希尔排序的时间复杂度都不固定。(时间复杂度不固定)
4. 稳定性:不稳定

3 选择排序

        基本思想:第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小(大)元素,然后放到已排序的序列的末尾。以此类推,直到全部待排序的数据元素的个数为零。选择排序是不稳定的排序方法。

3.1 直接选择排序

        动态图解如下图所示:

3.1.1 详细思路与图解分析

第一次:从arr[0]~arr[n-1]中选取最小值,与arr[0]进行交换;
第二次:从arr[1]~arr[n-1]中选取最小值,与arr[1]进行交换;
第三次:从arr[2]~arr[n-1]中选取最小值,与arr[2]进行交换;

第 i 次:从arr[i]~arr[i-1]中选取最小值,与arr[i]进行交换;
总共通过n-1次,可以得到从小到大的有序序列。

以序列:{8, 3, 2, 1, 7, 4, 6, 5} 为例!分步骤图解如下:              

综上所述:

  1. 在每趟排序时,都默认当前位置的元素为最小值,如果在遍历过程中发现有比当前位置元素还小的值,则替换最小值。(先将最小值记录,此趟遍历完成再替换)
  2. 选择排序一共有arr.length-1次趟排序。

        代码一如下实现:

  public static void selectSort(int[] arr){//选择排序过程for (int i = 0; i < arr.length - 1; i++) {int minIndex = i; //假定最小索引,最小值为第一个元素int min = arr[minIndex];for (int j = i + 1; j < arr.length; j++) {if (min > arr[j]){//更新最小值min = arr[j];minIndex = j;}}//将最小值放进arr[i]if (i != minIndex){arr[minIndex] = arr[i];arr[i] = min;}//输出每轮排序后的结果System.out.println("第" + (i+1) + "趟: " + Arrays.toString(arr));}}

        代码二(更易理解):

    public static void selectSort(int[] array) {for (int i = 0; i < array.length; i++) {int minIndex = i;int j = i+1;for (; j < array.length; j++) {if(array[j] < array[minIndex]) {minIndex = j;}}swap(array,i,minIndex);}}private static void swap(int[] array,int i,int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}

        测试代码及结果:

public static void main(String[] args) {int[] array = {8, 3, 2, 1, 7, 4, 6, 5};System.out.println("排序前: " + Arrays.toString(array));selectSort(array);System.out.println("排序后: " + Arrays.toString(array));}

       

3.1.2 直接选择排序的特性总结

  1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用

  2. 时间复杂度:O(N^2)

  3. 空间复杂度:O(1)

  4. 稳定性:不稳定

3.2 堆排序

        堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。(关于堆的相关详细知识见于前面相应章节)分为两种方法:        

        大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;

        小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

3.2.1 详细思路与图解分析

        图解如下图所示: 

由上图所示,该方法思路如下所示:

  1. 创建一个堆 H[0……n-1];

  2. 把堆首(最大值)和堆尾互换;

  3. 把堆的尺寸缩小 1,并调用相应方法,目的是把新的数组顶端数据调整到相应位置;

  4. 重复步骤 2,直到堆的尺寸为 1

代码实现如下:

    private  void swap(int[] array,int i,int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}public  void heapSort(int[] array) {createBigHeap(array);int end = array.length-1;while (end > 0) {swap(array,0,end);shiftDown(array,0,end);end--;}}private  void createBigHeap(int[] array) {for (int parent = (array.length-1-1)/2; parent >= 0 ; parent--) {shiftDown(array,parent,array.length);}}private  void shiftDown(int[] array,int parent,int len) {int child = 2*parent+1;while (child < len) {if(child+1 < len && array[child] < array[child+1]) {child++;}if(array[child] > array[parent]) {swap(array,child,parent);parent = child;child = 2*parent+1;}else {break;}}}

3.2.2 分析与总结

  1. 堆排序使用堆来选数,效率就高了很多。

  2. 时间复杂度:O(N*logN)

  3. 空间复杂度:O(1)

  4. 稳定性:不稳定

ps:本次的学习就到这里了,如果喜欢的话就请一键三连哦~~~ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/217176.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

工业级路由器在货运物流仓储管理中的应用

工业级路由器在货运物流仓储管理中扮演着重要的角色&#xff0c;为整个物流系统提供了稳定可靠的网络连接和数据传输支持。下面将从以下几个方面介绍工业级路由器在货运物流仓储管理中的应用。 实时监控和追踪&#xff1a;工业级路由器通过与各种传感器、监控设备和物联网设备的…

骨灰级程序员那些年曾经告诉我们的高效学习的态度

一、背景 以前阅读陈皓老师的左耳听风专栏中关于如何高效学习的总结让我收货颇丰&#xff0c;今天总结了一下&#xff0c;分享给大家 老师说&#xff1a; 学习是一件“逆人性”的事&#xff0c;就像锻炼身体一样&#xff0c;需要人持续付出&#xff0c;会让人感到痛苦&#…

Layui实现自定义的table列悬停事件并气泡提示信息

1、概要 使用layui组件实现table的指定列悬停时提示信息&#xff0c;因为layui组件中没有鼠标悬停事件支持&#xff0c;所以需要结合js原生事件来实现这个功能&#xff0c;并结合layui的tips和列的templte属性气泡提示实现效果。 2、效果图 3、代码案例 <!DOCTYPE html&g…

2023自动化测试框架的设计原则你都知道吗?快来看!

1.代码规范 测试框架随着业务推进&#xff0c;必然会涉及代码的二次开发&#xff0c;所以代码编写应符合通用规范&#xff0c;代码命名符合业界标准&#xff0c;并且代码层次清晰。特别在大型项目、多人协作型项目中&#xff0c;如果代码没有良好的规范&#xff0c;那么整个框架…

Linux进程控制

Linux进程控制 一.进程创建(fork函数)二.进程终止1.退出码的概念2.查看错误码3.查看错误码对应的错误信息1.strerror2.函数退出时的错误码2.自定义错误码 4.进程异常5.exit终止进程6.总结 三.进程等待1.为什么要有进程等待2.wait3.waitpid1.函数介绍2.演示3.利用位运算分别取出…

网工内推 | IT经理,50k*14薪,NP以上即可,七险一金

01 海天瑞声 招聘岗位&#xff1a;IT经理 职责描述&#xff1a; 1、IT基础架构的方案制定、实施和日常维护&#xff0c;包括机房建设运维、服务器配置及运维、网络规划及运维、上网行为管理、电话、电话、监控、门禁等各类弱电系统搭建及运维 2、负责公司环境及网络安全防御体…

【论文阅读】深度学习方法在数字岩石技术中的应用进展

【论文名称】Advances in the application of deep learning methods to digital rock technology 深度学习方法在数字岩石技术中的应用进展 【论文来源】EI检索 【作者单位】长江大学地球物理与油气资源学院、加拿大阿尔伯塔大学土木与环境工程系、东北石油大学地球科学学院、…

微信小程序:用map()将对象数组中的某一项组合成新数组

使用分析 使用map()方法来遍历 info 数组中的每个元素&#xff0c;并整合每一个对象中的某一项进行新数组的重组 效果展示 这里是查询对象数组中的全部name值 原始数据 提取出name的数组 核心代码 var infos items.map(item > item.name); 完整代码&#xff08;用微信小程…

Facebook广告投放常见错误

在进行Facebook广告投放时&#xff0c;很容易犯一些常见的错误。这些错误可能导致广告投资的浪费&#xff0c;影响广告效果并降低回报。本文小编讲一些常见的Facebook广告投放错误&#xff0c;以及如何避免它们。 1、不明确目标受众 广告的成功与否很大程度上取决于你选择的目…

JVM GUI可视化监控及诊断工具

工具既述 使用命令行工具或组合能帮您获取目标Java应用性能相关的基础信息&#xff0c;但它们存在下列局限&#xff1a; 无法获取方法级别的分析数据&#xff0c;如方法间的调用关系、各方法的调用次数和调用时间等&#xff08;这对定位应用性能瓶颈至关重要&#xff09;。要…

人工智能(pytorch)搭建模型22-基于pytorch搭建SimpleBaseline(人体关键点检测)模型,并详细介绍该网络模型与代码实现

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能(pytorch)搭建模型22-基于pytorch搭建SimpleBaseline(人体关键点检测)模型&#xff0c;并详细介绍该网络模型与代码实现。本文将介绍关于SimpleBaseline模型的原理&#xff0c;以及利用pytorch框架搭建模型…

蓝桥杯物联网竞赛_STM32L071_9_按键矩阵扩展模块

原理图&#xff1a; 矩阵按键原理图&#xff1a; 实验板接口原理图&#xff1a; 得到对应图&#xff1a; 扫描按键原理&#xff1a; 按键的COLUMN1、2、3分别制0&#xff0c;每次只允许其中一个为0其他都是1&#xff08;POW1和POW2正常状况为上拉&#xff09;&#xff0c;当有…

快速排序的非递归实现

上期我们实现了快速排序的递归实现&#xff0c;但是我们知道如果递归深度太深&#xff0c;栈就会溢出&#xff0c;所以我们本期将为大家讲述快速排序的非递归实现&#xff0c;我们需要用到栈的数据结构&#xff0c;我们知道栈中的数据全是在堆区开辟的空间&#xff0c;堆的空间…

【docker】Hello World

搜索hello-world镜像 docker search hello-world拉去镜像 docker pull hello-world查看本地镜像 docker images 运行镜像 docker run hello-world查看所有的容器 docker ps -a查询start状态容器 docker ps 输出介绍 CONTAINER ID: 容器 ID。IMAGE: 使用的镜像。COMMAN…

elementui select中添加新增标签

<el-select v-model"ruleForm.eventType" :placeholder"请选择事件类型&#xff0c;可手动添加" ref"template" clearable visible-change"(v) > visibleChange(v, template)"><el-option v-for"item in eventTypeOp…

【离散数学】——期末刷题题库(欧拉图和哈密顿图)

&#x1f383;个人专栏&#xff1a; &#x1f42c; 算法设计与分析&#xff1a;算法设计与分析_IT闫的博客-CSDN博客 &#x1f433;Java基础&#xff1a;Java基础_IT闫的博客-CSDN博客 &#x1f40b;c语言&#xff1a;c语言_IT闫的博客-CSDN博客 &#x1f41f;MySQL&#xff1a…

遥感图像之多模态检索AMFMN(支持关键词、句子对图像的检索)论文阅读、环境搭建、模型测试、模型训练

一、论文阅读 1、摘要背景 遥感跨模态文本图像检索以其灵活的输入和高效的查询等优点受到了广泛的关注。然而&#xff0c;传统的方法忽略了遥感图像多尺度和目标冗余的特点&#xff0c;导致检索精度下降。为了解决遥感多模态检索任务中的多尺度稀缺性和目标冗余问题&#xff…

从零构建属于自己的GPT系列6:模型部署2(文本生成函数解读、模型本地化部署、文本生成文本网页展示、代码逐行解读)

&#x1f6a9;&#x1f6a9;&#x1f6a9;Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1&#xff1a;数据预处理 从零构建属于自己的GPT系列2&#xff1a;模型训…

电子取证中Chrome各版本解密Cookies、LoginData账号密码、历史记录

文章目录 1.前置知识点2.对于80.X以前版本的解密拿masterkey的几种方法方法一 直接在目标机器运行Mimikatz提取方法二 转储lsass.exe 进程从内存提取masterkey方法三 导出SAM注册表 提取user hash 解密masterkey文件&#xff08;有点麻烦不太推荐&#xff09;方法四 已知用户密…

剧本杀小程序成为创业者新选择,剧本杀小程序开发

剧本杀作为现下年轻人最喜欢的新兴行业&#xff0c;发展前景非常乐观&#xff0c;即使剧本杀目前处于创新发展阶段&#xff0c;但剧本杀行业依然在快速发展中。 根据业内数据&#xff0c;预计2025年剧本杀市场规模能达到四百多亿元。市场规模的扩大自然也吸引来了不少的创业者…