【论文阅读】深度学习方法在数字岩石技术中的应用进展

【论文名称】Advances in the application of deep learning methods to digital rock technology
深度学习方法在数字岩石技术中的应用进展
【论文来源】EI检索
【作者单位】长江大学地球物理与油气资源学院、加拿大阿尔伯塔大学土木与环境工程系、东北石油大学地球科学学院、长江大学油气资源勘探技术重点实验室
【论文原文】https://doi.org/10.46690/ager.2023.04.02

文章目录

  • 一、 三维数字岩石重建
  • 二、 图像分辨率增强
  • 三、 图像分割
  • 四、 数字岩石参数预测
  • 五、 总结

一、 三维数字岩石重建

传统的数字岩石重建方法:物理实验(电镜扫描)、数值重建(模拟退火法、马尔可夫链蒙特卡罗法、截断高斯随机场法、多点统计量)、混合建模(结合前两种,物理获取2D数据,数值重建三维数字岩石)
深度学习算法主要包括生成对抗网络GANs和变分自动编码器VAEs。
在这里插入图片描述

(图1 GAN网络结构)

在这里插入图片描述

(表1 不同GAN网络变形的优缺点比较)

二、 图像分辨率增强

由于micro-CT的局限性,高分辨率(HR)图像的视场较小,大视场图像的分辨率较低。
深度学习方法:超分辨率卷积神经网络(SRCNN,衍生出EDSR[enhanced deep SR]、WDSR[wide-activation deep SR])、超高分辨率周期一致性生成对抗网络(SR-CycleGAN)、混合时空深度学习(HSDL)等。
在这里插入图片描述

(图2 EDSR结构图)

在这里插入图片描述

(图3 WDSR结构图)

在这里插入图片描述

(图4 SR-CycleGAN的结构包括(a)两个发生器(GX: Y→X和GY: X→Y)和两个相关鉴别器(DX和DY),(b)正向循环一致性:X≈GX (GY (X))。(c)后向循环一致性:y≈GY (GX (y))。)

在这里插入图片描述

(图5 SR-CycleGAN的离线训练阶段(下)和在线测试阶段(上))

在这里插入图片描述

(图6 LR岩石图像:(上)双三次插值生成的HR结果,(中)SRCycleGAN生成的HR结果,(下)地面真相)

在这里插入图片描述

(图7 图像分辨率增强方法比较:(a)参考图像,(b)低分辨率输入图像,(c)规则深度学习图像,(d)双三次插值图像,(e) HSDL生成图像)

SRCycleGAN论文名称:Super-resolution of real-world rock microcomputed tomography images using cycle-consistent generative adversarial networks
HSDL论文名称:Enhancing images of shale formations by a hybrid stochastic and deep learning algorithm

三、 图像分割

传统分割方法:多阈值分割、边缘检测、聚类分割
深度学习方法:卷积神经网络CNN、全卷积网络FCN、Unet、DeepLab、SegNet、Unet++等
在这里插入图片描述

(图8 Unet网络架构。左侧为编码器,右侧为解码器,双方采用跳过连接层进行连接)

在这里插入图片描述

(图9 最大池索引用于SegNet中的上采样低分辨率图)

在这里插入图片描述

(图10 SegNet的基本内部结构)

利用支持向量机、最近邻、随机森林、人工神经网络和U-Net网络模型等多种图像分割方法对页岩SEM图像进行多组分分割。
SegNet论文名称:Application of machine learning techniques in mineral classification for scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) images.
在这里插入图片描述

(表2 不同模型的预测结果)

在这里插入图片描述

(图11 包括四个规则的U-Net的U-Net++模型结构)

U n e t + + \pmb{Unet++} Unet++论文名称:Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM
在这里插入图片描述

(图12 不同分割方法的分割结果比较)

四、 数字岩石参数预测

深度学习方法:
Tembely等人(2021)使用 C N N \pmb{CNN} CNN来预测三维CT图像的孔隙度、地层因子和渗透率,精度很高。
论文名称:Machine and deep learning for estimating the permeability of complex carbonate rock from X-ray micro-computed tomography
Rabbani等人(2020)提出了一种基于 C N N \pmb{CNN} CNN的工作流,用于估计二值化3D CT图像的各种形态、水力和电气特性。
论文名称:DeePore: A deep learning workflow for rapid and comprehensive characterization of porous materials
在这里插入图片描述

(图13 用于参数预测的CNN网络示意图)

数值模拟方法:Wang et al. (2019b)基于OpenFOAM框架建立了三维孔隙网络模型,计算了孔隙网络模型的孔隙度和渗透率。论文名称:Researches on the pore permeability prediction method of 3D digital cores based on machine learning。

五、 总结

     本文综述了深度学习方法在三维数字岩石重建、图像分辨率增强、图像分割和数字岩石参数预测等方面的应用。尽管数字岩石技术已经发展了几十年,但仍有许多研究挑战有待解决。本研究中提到的方法已经部分克服了重建、分辨率增强、分割和参数预测任务所带来的挑战。然而,这些方法仍然不能同时考虑训练速度、图像大小和建模精度。因此,人工智能方法在数字岩石领域的应用应得到更全面的发展。数字岩石的重建应受到物理性质的约束,以确保生成的样品的真实性和多样性。目前的构件分割过程大多基于二维切片,不能保证构件在各个方向上的连续性。因此,需要考虑正交切片分割参数预测不仅要根据图像本身,还要根据孔隙度、孔隙空间分布等物理性质。此外,还可以进一步提高分割的准确性,还需要尝试预测更多的岩石参数。

    此外,随着未来智能数字油田的发展成为大势所趋,建议研究人员充分利用深度学习等人工智能方法的强大能力,对采集到的核心数据和属性进行持续学习和更新。与其他常见的数字或动物识别等机器学习任务不同,它在数字岩石领域的应用相对较新,缺乏可靠的数据。因此,有必要建立一个包含岩石数字图像及其物理性质的开源可更新数据库。这将使地质和地球物理数据的结合能够全面、系统地发展可靠的战略,将微观和局部数字岩石技术集成到宏观和整体勘探和开发过程中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/217167.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序:用map()将对象数组中的某一项组合成新数组

使用分析 使用map()方法来遍历 info 数组中的每个元素,并整合每一个对象中的某一项进行新数组的重组 效果展示 这里是查询对象数组中的全部name值 原始数据 提取出name的数组 核心代码 var infos items.map(item > item.name); 完整代码(用微信小程…

Facebook广告投放常见错误

在进行Facebook广告投放时,很容易犯一些常见的错误。这些错误可能导致广告投资的浪费,影响广告效果并降低回报。本文小编讲一些常见的Facebook广告投放错误,以及如何避免它们。 1、不明确目标受众 广告的成功与否很大程度上取决于你选择的目…

JVM GUI可视化监控及诊断工具

工具既述 使用命令行工具或组合能帮您获取目标Java应用性能相关的基础信息,但它们存在下列局限: 无法获取方法级别的分析数据,如方法间的调用关系、各方法的调用次数和调用时间等(这对定位应用性能瓶颈至关重要)。要…

人工智能(pytorch)搭建模型22-基于pytorch搭建SimpleBaseline(人体关键点检测)模型,并详细介绍该网络模型与代码实现

大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型22-基于pytorch搭建SimpleBaseline(人体关键点检测)模型,并详细介绍该网络模型与代码实现。本文将介绍关于SimpleBaseline模型的原理,以及利用pytorch框架搭建模型…

蓝桥杯物联网竞赛_STM32L071_9_按键矩阵扩展模块

原理图: 矩阵按键原理图: 实验板接口原理图: 得到对应图: 扫描按键原理: 按键的COLUMN1、2、3分别制0,每次只允许其中一个为0其他都是1(POW1和POW2正常状况为上拉),当有…

快速排序的非递归实现

上期我们实现了快速排序的递归实现,但是我们知道如果递归深度太深,栈就会溢出,所以我们本期将为大家讲述快速排序的非递归实现,我们需要用到栈的数据结构,我们知道栈中的数据全是在堆区开辟的空间,堆的空间…

【docker】Hello World

搜索hello-world镜像 docker search hello-world拉去镜像 docker pull hello-world查看本地镜像 docker images 运行镜像 docker run hello-world查看所有的容器 docker ps -a查询start状态容器 docker ps 输出介绍 CONTAINER ID: 容器 ID。IMAGE: 使用的镜像。COMMAN…

elementui select中添加新增标签

<el-select v-model"ruleForm.eventType" :placeholder"请选择事件类型&#xff0c;可手动添加" ref"template" clearable visible-change"(v) > visibleChange(v, template)"><el-option v-for"item in eventTypeOp…

【离散数学】——期末刷题题库(欧拉图和哈密顿图)

&#x1f383;个人专栏&#xff1a; &#x1f42c; 算法设计与分析&#xff1a;算法设计与分析_IT闫的博客-CSDN博客 &#x1f433;Java基础&#xff1a;Java基础_IT闫的博客-CSDN博客 &#x1f40b;c语言&#xff1a;c语言_IT闫的博客-CSDN博客 &#x1f41f;MySQL&#xff1a…

遥感图像之多模态检索AMFMN(支持关键词、句子对图像的检索)论文阅读、环境搭建、模型测试、模型训练

一、论文阅读 1、摘要背景 遥感跨模态文本图像检索以其灵活的输入和高效的查询等优点受到了广泛的关注。然而&#xff0c;传统的方法忽略了遥感图像多尺度和目标冗余的特点&#xff0c;导致检索精度下降。为了解决遥感多模态检索任务中的多尺度稀缺性和目标冗余问题&#xff…

从零构建属于自己的GPT系列6:模型部署2(文本生成函数解读、模型本地化部署、文本生成文本网页展示、代码逐行解读)

&#x1f6a9;&#x1f6a9;&#x1f6a9;Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1&#xff1a;数据预处理 从零构建属于自己的GPT系列2&#xff1a;模型训…

电子取证中Chrome各版本解密Cookies、LoginData账号密码、历史记录

文章目录 1.前置知识点2.对于80.X以前版本的解密拿masterkey的几种方法方法一 直接在目标机器运行Mimikatz提取方法二 转储lsass.exe 进程从内存提取masterkey方法三 导出SAM注册表 提取user hash 解密masterkey文件&#xff08;有点麻烦不太推荐&#xff09;方法四 已知用户密…

剧本杀小程序成为创业者新选择,剧本杀小程序开发

剧本杀作为现下年轻人最喜欢的新兴行业&#xff0c;发展前景非常乐观&#xff0c;即使剧本杀目前处于创新发展阶段&#xff0c;但剧本杀行业依然在快速发展中。 根据业内数据&#xff0c;预计2025年剧本杀市场规模能达到四百多亿元。市场规模的扩大自然也吸引来了不少的创业者…

蓝桥杯航班时间

蓝桥杯其他真题点这里&#x1f448; //飞行时间 - 时差 已过去的时间1 //飞行时间 时差 已过去的时间2 //两个式子相加会发现 飞行时间 两段时间差的和 >> 1import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader;public cl…

如何学习Kubernetes,学习K8S入门教程

学习 Kubernetes&#xff08;K8s&#xff09;确实不容易 你的硬件资源有限时&#xff0c;不过别担心&#xff0c;我帮你理清思路&#xff0c;让你在学习 K8s 的路上更加从容。 1、资源限制下的学习方法 当硬件资源有限时&#xff0c;一个好的选择是使用云服务提供的免费层或者…

最新鸿蒙HarmonyOS4.0开发登陆的界面2

登陆功能 代码如下&#xff1a; import router from ohos.router; Entry Component struct Index {State message: string XXAPP登陆State userName: string ;State password: string ;build() {Row() {Column({space:50}) {Image($r(app.media.icon)).width(200).interpol…

【EI会议征稿】第三届电力系统与电力工程国际学术会议(PSPE 2024)

第三届电力系统与电力工程国际学术会议&#xff08;PSPE 2024&#xff09; 2024 3rd International Conference on Power System and Power Engineering(PSPE 2024) 第三届电力系统与电力工程国际学术会议&#xff08;PSPE 2024&#xff09;于2024年3月29-31日在中国三亚隆重召…

DM8/达梦 数据库管理员使用手册详解

1.1DM客户端存放位置 Windows&#xff1a;DM数据库安装目录中tool文件夹和bin文件夹中。 Linux&#xff1a;DM数据库安装目录中tool目录和bin目录中。 1.2DM数据库配置助手 1.2.1Windows创建数据库 打开数据库配置助手dbca 点击创建数据库实例 选择一般用途 浏览选择数据库…

Shrio 安全框架

目录 前言 1.介绍 2.整合 Shiro 到 Spring Boot 3.Shiro 相关配置 总结 前言 几乎所有涉及用户的系统都需要进行权限管理&#xff0c;权限管理涉及到一个系统的安全。Spring Boot 的安全框架整合方案中还有一个璀璨的明珠&#xff1a;Shrio。 1.介绍 Shiro是一款由Java 编…

SQL自学通之函数 :对数据的进一步处理

目录 一、目标 二、汇总函数 COUNT SUM AVG MAX MIN VARIANCE STDDEV 三、日期/时间函数 ADD_MONTHS LAST_DAY MONTHS_BETWEEN NEW_TIME NEXT_DAY SYSDATE 四、数学函数 ABS CEIL 和FLOOR COS、 COSH 、SIN 、SINH、 TAN、 TANH EXP LN and LOG MOD POW…