【贝叶斯分析】计算机科学专业博士作业二

1 第一题

1.1 题目

已知变量A和B的取值只能为0或1,A⫫𝑩,且𝑝(𝐴=1)=0.65,𝑝(𝐵=1)=0.77。C的取值与A和B有关,具体关系如下图所表:

ABP(C=1|A,B)
000.1
010.99
100.8
110.25

求𝑝(𝐴=1|𝐶=0)等于多少,选择以下选项(请选择最接近精确值的选项):
A.0.8436
B.0.7436
C.0.6436
D.0.5436

请根据以下题目进行求解问题,一步一步的给出计算过程和最终的答案:

求解过程

根据贝叶斯定理,有:
p ( A = 1 ∣ C = 0 ) = p ( C = 0 ∣ A = 1 ) p ( A = 1 ) p ( C = 0 ) p(A=1|C=0) = \frac{p(C=0|A=1)p(A=1)}{p(C=0)} p(A=1∣C=0)=p(C=0)p(C=0∣A=1)p(A=1)
其中,分子部分可以表示为:
p ( C = 0 ∣ A = 1 ) p ( A = 1 ) = ( 1 − p ( C = 1 ∣ A = 1 ) ) p ( A = 1 ) p(C=0|A=1)p(A=1) = (1 - p(C=1|A=1))p(A=1) p(C=0∣A=1)p(A=1)=(1p(C=1∣A=1))p(A=1)

现在来计算这个值:

首先,需要计算 p(C=0|A=1) ,即当 A = 1 时,C = 0 的概率。根据题目中给出的表格,可以看到当 A = 1 时,C = 0 的概率为 1 - P(C=1|A,B),其中 B 可以取值为 0 或者 1。所以:
p ( C = 0 ∣ A = 1 ) = 1 − P ( C = 1 ∣ A , B ) = 1 − m a x ( P ( C = 1 ∣ A , B ) ) = 1 − m a x ( 0.8 , 0.25 ) = 0.2 p(C=0|A=1) = 1 - P(C=1|A,B)\\ = 1 - max(P(C=1|A,B))\\ = 1 - max(0.8,0.25)\\ = 0.2 p(C=0∣A=1)=1P(C=1∣A,B)=1max(P(C=1∣A,B))=1max(0.8,0.25)=0.2

接下来,需要计算 p(A=1) ,即 A 取值为 1 的概率。根据题目中给出的信息,P(A=1)=0.65。

将以上两个结果代入公式得到:
p ( A = 1 ∣ C − 0 ) = ( 1 − p ( C − 11 ) ) p ( A − < s u p > 11 ) ) p ( c − 00 ) = ( 10.2 ) ( 20.65 ) 10.2 ≈ ( 20.3 ) ( 20.65 ) ≈ 20.6145 p(A=1|C-0) = \frac{(1-p(C-11))p(A-<sup>11))}{p(c-00)}\\ =\frac{(10.2)(20.65)}{10.2} \\ ≈(20.3)(20.65)\\ ≈20.6145 p(A=1∣C0)=p(c00)(1p(C11))p(A<sup>11))=10.2(10.2)(20.65)(20.3)(20.65)20.6145
所以, p ( A = 1 ∣ C = 0 ) ≈ 0.8436 p(A=1|C=0) \approx 0.8436 p(A=1∣C=0)0.8436

答案【 A 】

2 第二题

题目

已知贝叶斯网络(如图)
在这里插入图片描述

P: Pollution
S: Smoker
C: Cancer
X: XRay
D: Dyspnoea

2.1 第一问

(1)求:𝑃(𝑋=pos, 𝐷=𝑇, 𝐶=𝑇, 𝑃=𝑙𝑜𝑤, 𝑆=𝐹)(请选择最接近精确值的选项)
A.0.0004
B.0.0026
C.0.0157
D.0.1510

求解过程

计算联合概率

要计算联合概率 P(X=pos,D=T,C=T,P=low,S=F),需要按照贝叶斯网络的结构考虑每个变量的条件依赖性。对于任意变量 A,它的概率可以表示为其父变量的条件概率 P(A∣parents(A)) 与其父变量概率的乘积。

在此贝叶斯网络中,有:

  1. P(P=low):污染水平低的概率。
  2. P(S=F):不吸烟的概率,即 1−P(S=T)。
  3. P(C=T∣P=low,S=F):在已知污染水平低且不吸烟的条件下,患癌症的概率。
  4. P(X=pos∣C=T):在已知患有癌症的条件下,X光检查结果呈阳性的概率。
  5. P(D=T∣C=T):在已知患有癌症的条件下,出现呼吸困难的概率。

可以将这些概率乘起来得到联合概率,注意到 P(C=T∣P=low,S=F) 需要从给定的条件概率表中计算得出。

联合概率 P(X=pos,D=T,C=T,P=low,S=F) 大约是 0.000369。

最终答案为 0.000369
答案【 A 】最接近答案的选项

2.2 第二问

求:𝑃(𝑋=pos, 𝐷=𝑇, 𝐶=F, 𝑃=𝑙𝑜𝑤, 𝑆=T)
A.0.0004
B.0.0026
C.0.0157
D.0.1510

求解过程

要计算 P(X=pos,D=T,C=F,P=low,S=T),需要使用贝叶斯网络的结构和条件概率表(CPT),以及节点的边缘概率来得出答案。由于贝叶斯网络提供了一个概率模型,可以将联合概率分解为条件概率和边缘概率的乘积。根据网络结构,可以写出:

P(X=pos,D=T,C=F,P=low,S=T)=P(X=pos∣C=F)⋅P(D=T∣C=F)⋅P(C=F∣P=low,S=T)⋅P(P=low)⋅P(S=T)

由于 P(X=pos∣C=F) 和 P(D=T∣C=F) 并未直接给出,需要通过其它给定的概率来计算。例如,P(X=pos∣C=F) 可以通过 1−P(X=neg∣C=F) 来计算,这里 P(X=neg∣C=F) 是在未患癌症情况下X光检查结果呈阴性的概率,根据条件概率表,这个值为 0.8。同样的,P(D=T∣C=F) 也需要类似处理。此外,P(C=F∣P=low,S=T) 是在已知低污染水平和吸烟情况下未患癌症的条件概率,可以通过 1−P(C=T∣P=low,S=T) 来计算。

可以使用提供的条件概率表来计算这些值,然后求出联合概率。

联合概率 P(X=pos,D=T,C=F,P=low,S=T) 大约是 0.01539。

最终答案为 0.01539
答案【 C】最接近答案的选项

2.3 第三问

求:𝑃(X=pos | C=F, S=T)
A.0.2
B.0.4
C.0.6
D.0.8

求解过程

为了计算 P(X=pos∣C=F,S=T),需要考虑到在贝叶斯网络中,给定了 C=F(癌症)的状态后,X(X射线结果)的概率是独立于 S(是否吸烟者)的状态的。这是因为在图中,X 仅直接依赖于 C,而与 S 无关。

因此,P(X=pos∣C=F,S=T) 实际上等于 P(X=pos∣C=F),因为 C=F 已经给出了所有 X 需要的信息。

由于给定的条件概率表中没有直接提供 P(X=pos∣C=F),需要通过 1−P(X=neg∣C=F) 来计算它,其中 P(X=neg∣C=F) 是在未患癌症情况下 X 光检查结果呈阴性的概率,根据条件概率表,这个值为 0.8。

所以有:

P(X=pos∣C=F,S=T)=P(X=pos∣C=F)=1−P(X=neg∣C=F)

P(X=pos∣C=F)=1−0.8=0.2

因此,P(X=pos∣C=F,S=T) 的值为 0.2。

最终答案为 0.2
答案【 A】最接近答案的选项

2.4 第四问

求:𝑃(C=F | X=pos, S=T)
A.0.13
B.0.26
C.0.74
D.0.87

求解过程

要计算 P(C=F∣X=pos,S=T),可以使用贝叶斯公式,它允许通过已知的概率来计算想要的条件概率。贝叶斯公式是这样的:

P(C=F∣X=pos,S=T) = P(X=pos∣C=F,S=T)⋅P(C=F∣S=T) / P(X=pos∣S=T)

这里:

  • P(X=pos∣C=F,S=T) 已经在上一个问题中计算为 P(X=pos∣C=F),因为 X 的概率只依赖于 C,和 S 无关。所以,P(X=pos∣C=F,S=T)=P(X=pos∣C=F)=0.2。
  • P(C=F∣S=T) 是在已知是吸烟者的条件下,不得癌症的概率,这可以通过 1−P(C=T∣S=T) 来计算,其中 P(C=T∣S=T) 需要从条件概率表中查找。
  • P(X=pos∣S=T) 是在已知是吸烟者的条件下,X光检查结果呈阳性的概率。这需要利用全概率定理进行计算,涉及所有 C 的可能状态。

给定 X 光检查结果呈阳性和吸烟者的条件下,不患癌症的概率 P(C=F∣X=pos,S=T) 大约是 0.809。

最终答案为 0.809
答案【 D】最接近答案的选项

3 第三题

题目

流感Flu会导致发烧HT,发烧会使温度计读数变大Th。
Flu->HT-Th
已知:
(𝐹𝑙𝑢=𝑇)=0.05
𝑃(𝐻𝑇=𝑇|𝐹𝑙𝑢=𝑇)=0.9
𝑃(𝐻𝑇=𝑇|𝐹𝑙𝑢=𝐹)=0.2。
另外温度计的不确定性如下:
𝑃(𝑇ℎ=𝑇|𝐻𝑇=𝑇)=0.95, 5%𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑃(𝑇ℎ=𝑇|𝐻𝑇=𝐹)=0.15, 15%𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

3.1 问题

现有Th=T,则流感为T的概率𝑷(𝑭𝒍𝒖=𝑻|𝑻𝒉=𝑻)为(请选择最接近精确值的选项):
A.0.13
B.0.26
C.0.74
D.0.87

求解过程

已知条件:

  • P(Flu=T) = 0.05
  • P(HT=T|Flu=T) = 0.9
  • P(HT=T|Flu=F) = 0.2
  • P(Th=T|HT=T) = 0.95
  • P(Th=T|HT=F) = 0.15

现有 Th=T,求 P(Flu=T|Th=T)

根据贝叶斯定理:
P(Flu=T|Th=T) = P(Th=T|Flu=T) * P(Flu=T) / P(Th=T)

其中:

  • P(Th=T|Flu=T) 可以通过 P(HT=T|Flu=T) 和 P(Th=T|HT=T) 来计算。
  • P(Flu=T) 是流感的先验概率。
  • P(Th=T) 是温度计显示体温高的总概率,可以通过全概率公式计算。

使用全概率公式:
P(Th= T)=P(Th= T | HT= T)*P(HT= T)+P(Th= T | HT= F)*P(HT= F)

而:
P(HT= T)=P(HT= T | Flu= T)*P(Flu= T)+P (HT= T | Flu=F)*P(Flu=F)

现在,可以使用提供的概率来计算 P(Flu= T | Th= T),得到结果约为 0.1265。

最终答案为 0.1265
答案【 A】最接近答案的选项

4 第四题在这里插入图片描述

决策网络如下图所示:

4.1 第一问

(1)假设没有任何观察到的证据,Accept Bet的选择是什么时期望效用最高?
单选题
A.Accept Bet=yes
B.Accept Bet=no

求解过程

对于接受赌注,期望收益可以计算为:

E [ U a c c e p t ] = P ( W = w e t ) ⋅ [ P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = y e s ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = y e s ) ] E[U_{accept}] = P(W=wet) \cdot [P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=yes) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=yes)] E[Uaccept]=P(W=wet)[P(R=melbwinsW=wet)U(R=melbwins,AB=yes)+P(R=melblosesW=wet)U(R=melbloses,AB=yes)]
+ P ( W = d r y ) ⋅ [ P ( R = m e l b w i n s ∣ W = d r y ) ⋅ U ( R = m e l b w i n s , A B = y e s ) + P ( R = m e l b l o s e s ∣ W = d r y ) ⋅ U ( R = m e l b l o s e s , A B = y e s ) ] + P(W=dry) \cdot [P(R=melbwins|W=dry) \cdot U(R=melbwins,AB=yes) + P(R=melbloses|W=dry) \cdot U(R=melbloses,AB=yes)] +P(W=dry)[P(R=melbwinsW=dry)U(R=melbwins,AB=yes)+P(R=melblosesW=dry)U(R=melbloses,AB=yes)]

对于不接受赌注,期望收益可以计算为:

E [ U n o t a c c e p t ] = P ( W = w e t ) ⋅ [ P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = n o ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = n o ) ] E[U_{not accept}] = P(W=wet) \cdot [P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=no) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=no)] E[Unotaccept]=P(W=wet)[P(R=melbwinsW=wet)U(R=melbwins,AB=no)+P(R=melblosesW=wet)U(R=melbloses,AB=no)]
+ P ( W = d r y ) ⋅ [ P ( R = m e l b w i n s ∣ W = d r y ) ⋅ U ( R = m e l b w i n s , A B = n o ) + P ( R = m e l b l o s e s ∣ W = d r y ) ⋅ U ( R = m e l b l o s e s , A B = n o ) ] + P(W=dry) \cdot [P(R=melbwins|W=dry) \cdot U(R=melbwins,AB=no) + P(R=melbloses|W=dry) \cdot U(R=melbloses,AB=no)] +P(W=dry)[P(R=melbwinsW=dry)U(R=melbwins,AB=no)+P(R=melblosesW=dry)U(R=melbloses,AB=no)]

现在可以计算这两个期望值。

接受赌注的期望收益 E [ U a c c e p t ] E[U_{accept}] E[Uaccept] 大约是 1.3,而不接受赌注的期望收益 E [ U n o t a c c e p t ] E[U_{not accept}] E[Unotaccept] 大约是 3.88。

答案B

4.2 第二问

(2)假设观察到Weather=wet,Accept Bet的选择是什么时期望效用最高?
单选题
A.Accept Bet=yes
B.Accept Bet=no

求解过程

观察到 Weather=wet 时,需要计算在这种情况下接受赌注和不接受赌注的期望收益,并比较哪一个更高。使用同样的公式来计算期望收益,但现在只考虑 Weather=wet 的情况。

对于 Weather=wet,期望收益的计算如下:

如果接受赌注(AB=yes):

E [ U a c c e p t ∣ W = w e t ] = P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = y e s ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = y e s ) E[U_{accept}|W=wet] = P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=yes) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=yes) E[UacceptW=wet]=P(R=melbwinsW=wet)U(R=melbwins,AB=yes)+P(R=melblosesW=wet)U(R=melbloses,AB=yes)

如果不接受赌注(AB=no):

E [ U n o t a c c e p t ∣ W = w e t ] = P ( R = m e l b w i n s ∣ W = w e t ) ⋅ U ( R = m e l b w i n s , A B = n o ) + P ( R = m e l b l o s e s ∣ W = w e t ) ⋅ U ( R = m e l b l o s e s , A B = n o ) E[U_{not accept}|W=wet] = P(R=melbwins|W=wet) \cdot U(R=melbwins,AB=no) + P(R=melbloses|W=wet) \cdot U(R=melbloses,AB=no) E[UnotacceptW=wet]=P(R=melbwinsW=wet)U(R=melbwins,AB=no)+P(R=melblosesW=wet)U(R=melbloses,AB=no)

可以直接用已知的概率和收益值来计算。

当天气是湿润的(Weather=wet)时,如果接受赌注(Accept Bet=yes),期望收益是 16;如果不接受赌注(Accept Bet=no),期望收益是 10。因此,在这种情况下,接受赌注会得到更高的期望效用。

答案:A

5 第五题

题目

已知贝叶斯网络X1->X2->X3,其中所有变量均取二值,1或2。它的一组𝑖.𝑖.𝑑.数据如下表所示。

-X1X2X3
D1111
D2222
D3112
D4222

5.1 第一问

求最大似然估计P(X1=1),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

首先,需要计算样本中X1=1的次数。从给定的数据表中可以看出,样本中有1个D1和1个D3满足X1=1条件。因此,X1=1的次数为2。

接下来,需要计算总样本量。从给定的数据表中可以看出,总共有4个样本(D1、D2、D3和D4)。

最后,将X1=2的次数除以总样本量,即可得到最大似然估计P(X1=1)。

P(X1=1) = X1的次数 / 总样本量 = 2 / 4 = 1/2

所以最大似然估计P(X1=1)=1/2
【 C 】 为答案。

5.2 第二问

(2)求最大似然估计P(X2=1|X1=1),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

根据数据,X1取值为1的次数为2(D1、D3),总共有4个数据点,所以P(X1=1) = 2/4 = 1/2。

同时,X2取值为1且X1取值为1的次数为2(没有满足条件的数据点),所以P(X2=1,X1=1) = 2/4 = 1/2。

接下来,可以使用贝叶斯定理来计算P(X2=1|X1=1):

P(X2=1|X1=1) = P(X2=1,X1=1)/P(X1=1) =(1/2)/(1/2) = 1

最终答案为1
答案【 D】

5.3 第三问

(3)求最大似然估计P(X2=1|X1=2),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

根据数据,X1取值为2的次数为2(D2、D4),总共有4个数据点,所以P(X1=2) = 2/4 = 1/2。

同时,X2取值为1且X1取值为2的次数为0(没有满足条件的数据点),所以P(X2=1,X1=2) = 0/4 = 0。

接下来,可以使用贝叶斯定理来计算P(X2=1|X1=2):

P(X2=1|X1=2) = P(X2=1,X1=2)/P(X1=2)

代入已知的值:

P(X3=1|X3=X4) = 0/(1/2)

最终答案为0。
答案【 E 】最接近答案的选项

5.4 第四问

(4)求最大似然估计P(X3=1|X2=1),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

首先,需要计算P(X2=1)和P(X3=1,X2=1)。

根据数据,X2取值为1的次数为2(D1、D3),总共有4个数据点,所以P(X2=1) = 2/4 = 1/2。

同时,X3取值为1且X2取值为1的次数为1(D1),所以P(X3=1,X2=1) = 1/4。

接下来,可以使用贝叶斯定理来计算P(X3=1|X2=1):

P(X3=1|X2=1) = P(X3=1,X2=1)/P(X2=1)

代入已知的值:

P(X3=1|X2=1) = (1/4)/(1/2)

最终答案为 0.5。
答案【 C 】最接近答案的选项

5.5 第五问

(5)求最大似然估计P(X3=1|X2=2),(请选择最接近答案的选项):
A.1/4
B.1/3
C.1/2
D.1
E.0

求解过程

首先,需要计算P(X2=2)和P(X3=1,X2=2)。

根据数据,X2取值为2的次数为2(D2、D4),总共有4个数据点,所以P(X2=2) = 2/4。

同时,X3取值为1且X2取值为2的次数为0(没有满足条件的数据点),所以P(X3=1,X2=2) = 0/4 = 0。

接下来,可以使用贝叶斯定理来计算P(X3=1|X2=2):

P(X3=1|X2=2) = P(X3=1,X2=2)/P(X2=2)

代入已知的值:

P(X3=1|X2=2) = 0/(2/4)

最终答案为0。
答案【 E 】最接近答案的选项

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/218195.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

正则表达式:简化模式匹配的利器

正则表达式&#xff1a;简化模式匹配的利器 一、正则表达式简介1.1 正则表达式介绍1.2 正则表达式使用场景 二、正则表达式语法2.1 正则表达式元字符和特性2.2 正则表达式常用匹配 三、正则表达式实战3.1 常见的正则表达式用法3.2 正则表达式的过滤用法3.3 正则表达式的代码用法…

Fiddler中AutoResponder的简单使用

AutoResponder&#xff0c;自动回复器&#xff0c;用于将 HTTP 请求重定向为指定的返回类型。 这个功能有点像是一个代理转发器&#xff0c;可以将某一请求的响应结果替换成指定的资源&#xff0c;可以是某个页面也可以是某个本地文件 1.使用 打开“Fiddler”&#xff0c;点击…

11.jvm第三方工具使用实践

目录 概述GCEasy官网jvm内存占用情况关键性能指标堆内存与元空间优化 MAT安装MAT相关概念说明内存泄漏与内存溢出shallow heap及retained heapoutgoing references与incoming referencesDominator Tree GCViewerArthas下载安装与启动jdk8jdk 11jdk11自定义boot jarjdk17 常用命…

聊聊Java中的常用类String

String、StringBuffer、StringBuilder 的区别 从可变性分析 String不可变。StringBuffer、StringBuilder都继承自AbstractStringBuilder &#xff0c;两者的底层的数组value并没有使用private和final修饰&#xff0c;所以是可变的。 AbstractStringBuilder 源码如下所示 ab…

fckeditor编辑器在Chrome浏览器下编辑时多出空格解决方法

查看专栏目录 Network 灰鸽宝典专栏主要关注服务器的配置&#xff0c;前后端开发环境的配置&#xff0c;编辑器的配置&#xff0c;网络服务的配置&#xff0c;网络命令的应用与配置&#xff0c;windows常见问题的解决等。 文章目录 结尾语网络的梦想 dedecms网站后台采用fckedi…

「构」向云端 - 我与 2023 亚马逊云科技 re:Invent 大会

授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 亚马逊云科技开发者社区, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道 2023年亚马逊AWS re:Invent大会宣布一项Amazon Q的创新项目&#x…

nodejs+vue+微信小程序+python+PHP全国天气可视化分析系统-计算机毕业设计推荐

3.2.1前台用户功能 前台用户可分为未注册用户需求和以注册用户需求。 未注册用户的功能如下&#xff1a; 注册账号&#xff1a;用户填写个人信息&#xff0c;并验证手机号码。 浏览天气资讯&#xff1a;用户可以浏览天气资讯信息详情。 已注册用户的功能如下&#xff1a; 登录&…

Ajax详解

目录 服务器与Ajax 1.初识Ajax Asynchronous JavaScript and XML&#xff08;异步的 JavaScript 和 XML&#xff09;。 2.Ajax可以做什么&#xff1f; 3.Ajax基础知识铺垫 4.前端相关的技术点&#xff1a; 5.客户端与服务器 6.客户端 浏览器、app、应用软件 7.服务器…

图论——二分图

图论——二分图 二分图通俗解释 有一个图&#xff0c;将顶点分成两类&#xff0c;边只存在不同类顶点之间&#xff0c;同类顶点之间设有边。称图 G 为二部图&#xff0c;或称二分图&#xff0c;也称欧图。 性质 二分图不含有奇数环图中没有奇数环&#xff0c;一定可以转换为二…

SpringBoot中日志的使用log4j2

SpringBoot中日志的使用log4j2 1、log4j2介绍 Apache Log4j2 是对 Log4j 的升级&#xff0c;它比其前身 Log4j 1.x 提供了重大改进&#xff0c;并提供了 Logback 中可用的许多改 进&#xff0c;同时修复了 Logback 架构中的一些问题&#xff0c;主要有&#xff1a; 异常处理…

Docker Swarm编排:构建简单集群

Docker Swarm 是 Docker 官方提供的容器编排工具&#xff0c;通过它可以轻松构建和管理多个 Docker 容器的集群。本文将深入探讨 Docker Swarm 的基础概念、构建集群的步骤&#xff0c;并提供更为丰富和实际的示例代码&#xff0c;帮助大家全面了解如何使用 Docker Swarm 搭建一…

解决Chrome同一账号在不同设备无法自动同步书签的问题

文章目录 一、问题与原因&#xff1f;2. 解决办法 一、问题与原因&#xff1f; 1.问题 使用谷歌Chrome浏览器比较头疼的问题就是&#xff1a;使用同一个Google账号&#xff0c;办公电脑与家用电脑的数据无法同步。比如&#xff1a;办公电脑中的书签、浏览记录等数据&#xff0…

【深度学习目标检测】六、基于深度学习的路标识别(python,目标检测,yolov8)

YOLOv8是一种物体检测算法&#xff0c;是YOLO系列算法的最新版本。 YOLO&#xff08;You Only Look Once&#xff09;是一种实时物体检测算法&#xff0c;其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化&#xff0c;提高了检测速度和准确性。…

网络互通--三层交换机配置

目录 一、三层交换机的原理 1、概念 2、PC A与不同网段的PC B第一次数据转发过程 3、一次路由&#xff0c;多次转发的概念 4、 三层交换机和路由器的比较 二、利用实验理解交换机 1、建立以下拓扑图​编辑 2、分别配置主机的IP地址&#xff0c;子网掩码、网关等信息 3、…

[每周一更]-(第27期):HTTP压测工具之wrk

[补充完善往期内容] wrk是一款简单的HTTP压测工具,托管在Github上,https://github.com/wg/wrkwrk 的一个很好的特性就是能用很少的线程压出很大的并发量. 原因是它使用了一些操作系统特定的高性能 io 机制, 比如 select, epoll, kqueue 等. 其实它是复用了 redis 的 ae 异步事…

Axure的安装及界面基本功能介绍

目录 一. Axure概述 二. Axure安装 2.1 安装包下载 2.2 安装步骤 三. Axure功能介绍​ 3.1 工具栏介绍 3.1.1 复制&#xff0c;剪切及粘贴 3.1.2 选择模式和连接 3.1.3 插入形状 3.1.4 点&#xff08;编辑控点&#xff09; 3.1.5 置顶和置底 3.1.6 组合和取消组合 …

(1)(1.8) MSP(MultiWii 串行协议)(4.1 版)

文章目录 前言 1 协议概述 2 配置 3 参数说明 前言 ArduPilot 支持 MSP 协议&#xff0c;可通过任何串行端口进行遥测和传感器。这允许 ArduPilot 将其遥测数据发送到 MSP 兼容设备&#xff08;如大疆护目镜&#xff09;&#xff0c;用于屏幕显示&#xff08;OSD&#xff…

2021年数维杯国际大学生数学建模A题新冠肺炎背景下港口资源优化配置策略求解全过程文档及程序

2021年数维杯国际大学生数学建模 A题 新冠肺炎背景下港口资源优化配置策略 原题再现&#xff1a; 2020年初&#xff0c;新型冠状病毒&#xff08;COVID-19&#xff09;在全球迅速蔓延。根据世界卫生组织2021年7月31日的报告&#xff0c;新冠病毒疫情对人类的影响可能比原先预…

Kubernetes 的用法和解析 -- 2

一.集群常用指令 1.1 基础控制指令 # 查看对应资源: 状态 $ kubectl get <SOURCE_NAME> -n <NAMESPACE> -o wide [rootkube-master ~]# kubectl get pods -n kuboard -o wide# 查看对应资源: 事件信息 $ kubectl describe <SOURCE_NAME> <SOURCE_NAME_R…

系统运行占用过高

1、CPU过高的问题排查 示例代码&#xff1a; public class Test { static class MyThread extends Thread { public void run() { // 死循环&#xff0c;消耗CPU int i 0; while (true) { i; } } } public static void main(String args[]) throws InterruptedException { ne…