【深度学习目标检测】六、基于深度学习的路标识别(python,目标检测,yolov8)

YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。

YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。

YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。

在YOLOv8中,还使用了一些技术来提高检测性能。首先是使用了多尺度检测。YOLOv8在不同的尺度上检测物体,这样可以更好地处理物体的大小变化和远近距离差异。其次是利用了FPN(Feature Pyramid Network)结构来提取多尺度特征。FPN可以将不同层级的特征图进行融合,使得算法对不同大小的物体都有较好的适应性。

此外,YOLOv8还利用了一种称为CSPDarknet的网络结构来减少计算量。CSPDarknet使用了CSP(Cross Stage Partial)结构,在网络的前向和后向传播过程中进行特征融合,从而减少了网络的参数量和计算量。

在训练阶段,YOLOv8使用了一种称为CutMix的数据增强技术。CutMix将不同图像的一部分进行混合,从而增加了数据的多样性和鲁棒性。

总而言之,YOLOv8是一种快速而准确的物体检测算法,它通过引入Darknet-53网络、多尺度检测、FPN结构、CSPDarknet结构和CutMix数据增强等技术,实现了对不同大小和距离的物体进行快速、准确的检测。

本文介绍了基于Yolov8的路标检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

效果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

路标检测数据集,检测4种路标:speedlimit,crosswalk,trafficlight,stop。总共877张图,其中训练集701张图、测试集176张图。

示例图片如下:

原始的数据格式为COCO格式,本文提供转换好的yolov8格式数据集,,可以直接放入yolov8中训练,数据集地址:路标数据集yolov8格式

三、模型训练

1、数据集配置文件

在ultralytics/ultralytics/cfg/datasets目录下添加roadsign.yaml,添加以下内容(path修改为自己的路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/roadsign/roadsign-yolov8  # 修改为自己的数据路径
train: images/train 
val: images/val  
test: images/val # Classes
names:# 0: normal0: speedlimit  # speedlimit,crosswalk,trafficlight,stop1: crosswalk2: trafficlight3: stop

2、修改模型配置文件

在ultralytics/ultralytics/cfg/models/v8目录下添加yolov8n_roadsign.yaml,添加以下内容:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 4  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs# s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs# m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs# l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs# x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, PolarizedSelfAttention, [256]] # 16- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, PolarizedSelfAttention, [512]] # 20- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [-1, 1, PolarizedSelfAttention, [1024]] # 24- [[16, 20, 24], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、训练模型

使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:

yolo detect train project=deploy name=yolov8_roadsign exist_ok=True optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8_roadsign.yaml  data=ultralytics/ultralytics/cfg/datasets/roadsign.yaml

4、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=deploy/yolov8_roadsign/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/roadsign.yaml

精度如下图:

四、推理

训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = 'road582.png'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

本教程训练好的权重和推理代码、示例代码连接:推理代码和训练好的权重

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/218174.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络互通--三层交换机配置

目录 一、三层交换机的原理 1、概念 2、PC A与不同网段的PC B第一次数据转发过程 3、一次路由,多次转发的概念 4、 三层交换机和路由器的比较 二、利用实验理解交换机 1、建立以下拓扑图​编辑 2、分别配置主机的IP地址,子网掩码、网关等信息 3、…

[每周一更]-(第27期):HTTP压测工具之wrk

[补充完善往期内容] wrk是一款简单的HTTP压测工具,托管在Github上,https://github.com/wg/wrkwrk 的一个很好的特性就是能用很少的线程压出很大的并发量. 原因是它使用了一些操作系统特定的高性能 io 机制, 比如 select, epoll, kqueue 等. 其实它是复用了 redis 的 ae 异步事…

Axure的安装及界面基本功能介绍

目录 一. Axure概述 二. Axure安装 2.1 安装包下载 2.2 安装步骤 三. Axure功能介绍​ 3.1 工具栏介绍 3.1.1 复制,剪切及粘贴 3.1.2 选择模式和连接 3.1.3 插入形状 3.1.4 点(编辑控点) 3.1.5 置顶和置底 3.1.6 组合和取消组合 …

(1)(1.8) MSP(MultiWii 串行协议)(4.1 版)

文章目录 前言 1 协议概述 2 配置 3 参数说明 前言 ArduPilot 支持 MSP 协议,可通过任何串行端口进行遥测和传感器。这允许 ArduPilot 将其遥测数据发送到 MSP 兼容设备(如大疆护目镜),用于屏幕显示(OSD&#xff…

2021年数维杯国际大学生数学建模A题新冠肺炎背景下港口资源优化配置策略求解全过程文档及程序

2021年数维杯国际大学生数学建模 A题 新冠肺炎背景下港口资源优化配置策略 原题再现: 2020年初,新型冠状病毒(COVID-19)在全球迅速蔓延。根据世界卫生组织2021年7月31日的报告,新冠病毒疫情对人类的影响可能比原先预…

Kubernetes 的用法和解析 -- 2

一.集群常用指令 1.1 基础控制指令 # 查看对应资源: 状态 $ kubectl get <SOURCE_NAME> -n <NAMESPACE> -o wide [rootkube-master ~]# kubectl get pods -n kuboard -o wide# 查看对应资源: 事件信息 $ kubectl describe <SOURCE_NAME> <SOURCE_NAME_R…

系统运行占用过高

1、CPU过高的问题排查 示例代码&#xff1a; public class Test { static class MyThread extends Thread { public void run() { // 死循环&#xff0c;消耗CPU int i 0; while (true) { i; } } } public static void main(String args[]) throws InterruptedException { ne…

Unity实现GoF23种设计模式

文章目录 Unity实现GoF23种设计模式概要一、创建型模式(Creational Patterns):二、结构型模式(Structural Patterns):三、行为型模式(Behavioral Patterns):Unity实现GoF23种设计模式概要 GoF所提出的23种设计模式主要基于以下面向对象设计原则: 对接口编程而不是对实…

阿里云服务器ECS安全组开启端口教程

阿里云服务器安全组开启端口教程 云服务器 ECS&#xff08;Elastic Compute Service&#xff09; 云服务器 ECS&#xff08;Elastic Compute Service&#xff09;是一种安全可靠、弹性可伸缩的云计算服务&#xff0c;助您降低 IT 成本&#xff0c;提升运维效率&#xff0c;使您…

【异常解决】SpringBoot + Maven 在 idea 下启动报错 Unable to start embedded Tomcat(已解决)

Unable to start embedded Tomcat&#xff08;已解决&#xff09; 一、背景介绍二、原因分析2.1 网络上整理2.2 其他原因 三、解决方案 一、背景介绍 spring boot(v2.5.14) maven idea 启动项目 之前项目一直启动的好好的&#xff0c;都能正常运行。重启的时候突然就不能启…

万户 OA OfficeServer.jsp 任意文件上传漏洞复现

0x01 产品简介 万户OA是面向政府组织及企事业单位的FlexOffice自主安全协同办公平台。 0x02 漏洞概述 万户OA OfficeServer.jsp接口存在任意文件上传漏洞,攻击者可通过该漏洞上传任意文件从而控制整个服务器。 0x03 复现环境 FOFA: (banner="OASESSIONID" &a…

vue中实现PDF文件流预览

代码示例 <template><div class"print"><div v-if"!viewShow" class"opt-box"><div style"height: 700px; overflow: auto;"><el-table :data"tableData" border><el-table-column prop…

lv12 linux内核的安装与加载

目录 1 tftp加载Linux内核及rootfs 1.1 uboot内核启动命令 1.2 uboot自启动参数环境变量 1.3 实验 2 EMMC加载Linux 内核及rootfs ​编辑 2.1 emmc中写入uimage ​编辑 2.2 emmc中写入dtb 2.3 emmc中写入根文件系统 2.4 设置环境变量 3 tftp加载Linux内核nfs挂载ro…

Echarts 热力图与折线图的结合

热力图与折线图结合使用(文末含源码) 这种需求并不多见&#xff0c;遇到后第一时间翻看了Echars官方文档&#xff0c;并没有发现类似的例子。于是自己动手合并了双轴&#xff0c;后发现折线图会被遮盖。经过排查发现了一个关键参数&#xff1a;visualMap的配置。这个配置在热力…

C# 雪花算法生成Id工具类

写在前面 传说自然界中并不存在两片完全一样的雪花的&#xff0c;每一片雪花都拥有自己漂亮独特的形状、独一无二&#xff1b;雪花算法也表示生成的ID如雪花般独一无二&#xff0c;该算法源自Twitter。 雪花算法主要用于解决分布式系统的唯一Id生成问题&#xff0c;在生产环境…

IDEA新建jdk8 spring boot项目

今天新建spring boot项目发现JDK版本最低可选17。 但是目前用的最多的还是JDK8啊。 解决办法 Server URL中设置&#xff1a; https://start.aliyun.com/设置完成后&#xff0c;又可以愉快的用jdk8创建项目了。 参考 https://blog.csdn.net/imbzz/article/details/13469117…

Pytorch从零开始实战13

Pytorch从零开始实战——ResNet与DenseNet探索 本系列来源于365天深度学习训练营 原作者K同学 文章目录 Pytorch从零开始实战——ResNet与DenseNet探索环境准备数据集模型选择开始训练可视化总结 环境准备 本文基于Jupyter notebook&#xff0c;使用Python3.8&#xff0c;P…

【学习笔记】JavaScript中的GC算法

1、内存管理 内存&#xff1a;由可读写单元组成&#xff0c;标识一片可操作的空间 管理&#xff1a; 认为的去操作一篇空间的申请、使用和释放 内存管理&#xff1a;开发者主动申请空间、使用空间、释放空间 管理流程&#xff1a; 申请-使用-释放 // 申请 let obj {} //使…

蓝牙物联网智慧工厂解决方案

蓝牙物联网智慧工厂解决方案是一种针对工厂管理的智能化解决方案&#xff0c;通过蓝牙、物联网、大数据、人工智能等技术&#xff0c;实现工厂人员的定位、物资的定位管理、车间的智慧巡检、智慧安防以及数据的可视化等功能。 蓝牙物联网智慧工厂解决方案构成&#xff1a; 人员…

华为数通——企业双出口冗余

目标&#xff1a;默认数据全部经过移动上网&#xff0c;联通低带宽。 R1 [ ]ip route-static 0.0.0.0 24 12.1.1.2 目的地址 掩码 下一条 [ ]ip route-static 0.0.0.0 24 13.1.1.3 preference 65 目的地址 掩码 下一条 设置优先级为65 R…