排序算法——快排

快速排序算法最早是由图灵奖获得者Tony Hoare设计出来的,他在形式化方法理论以 及ALGOL.60编程语言的发明中都有卓越的贡献,是20世纪最伟大的计算机科学家之—。 而这快速排序算法只是他众多贡献中的—个小发明而已。

快速排序(Quick Sort)的基本算法思想是:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可以分别对这两部分记录继续进行排序,以达到整个序列有序的目的。

接下来我们一起来认识一下快排。

霍尔版本

快排共有三种实现方法,最初的一代就是创始人霍尔的版本;

霍尔版本是数组的数,选定数组第一个位置keyi,然后从数组的最右边right=n-1往前一个个找到比keyi位置小的数,接下来从最左边left=0开始,找到第一个比Keyi位置大的数,然后交换刚才找到的右边小的数和左边大的数;接下来继续从右边找小,从左边找大,等到right和left相遇时,停下,此时再交换keyi和left(right)位置的数,那么,比这个key小的数都在key的左边,比Key大的数都在key的右边,再递归0到keyi-1,keyi+1到n-1位置的数,如此下来就可以得到有序的数据。

接下来我们开始实现

int PartSort1(int* a, int left, int right)
{int keyi = left;while (left < right)//left和right相遇时循环停下{while (left<right&&a[right] >= a[keyi])//找小{right--;//right没找到小right--往下走}while (left < right && a[left] <= a[keyi])//找大{left++;//left没找到大left++往下走}Swap(&a[left], &a[right]);//将找到的小的和大的交换位置}Swap(&a[left], &a[keyi]);//最后left和keyi交换位置return left;
}

 这是一趟keyi的找大找小过程,一个过程只能确定一个数的位置,我们还需要继续递归keyi的左边和keyi的右边。

int keyi = PartSort1(a, begin, end);
QuickSort(a, begin, keyi - 1);
QuickSort(a, keyi+1, end);

但是什么时候停止呢?当区间只有一个数的时候就需要停止,即begin==end时候return。但是还可能存在只剩区间【0,0】时,此时keyi=1,begin=0,keyi-1=0;keyi+1=2,end=0,发生不存在区间,所以就会停止。

void QuickSort(int* a, int begin,int end)
{if (begin >= end)//{return;}int keyi = PartSort1(a, begin, end);//每次可以确定一个keyi位置,保证不再变动QuickSort(a, begin, keyi - 1);QuickSort(a, keyi+1, end);
}

上述partsort1版本就是霍尔版本的快排。

挖坑法

第二个实现快排的方法是挖坑法

 挖坑法呢其实就是也是从a[0]开始,记key=a[0],在最开始处即a[0]处定义一个hole(坑),从右边开始找比key小的值,找到了把a[right]处赋给上一个hole,使right现在的位置为新的hole,再从左边left处找到比key大的值,把a[left]的值赋给上一个hole,使left现在的位置为新的hole,下面我们一起实现。

int PartSort2(int* a, int left, int right)
{int key = a[left];int hole = left;while (left < right){while (left<right && a[right]>key){right--;}a[hole] = a[right];hole = right;while (left<right && a[left]<key){left++;}a[hole] = a[left];hole = left;}a[hole] = key;//相遇后把最后一个hole位置的值给key;return hole;
}

最后返回hole的位置,接下来就和上面一样,QuickSort直接调用PastSort2,然后递归就可以啦。

前后指针法

第三种实现快排的方法是 前后指针法,虽然说是前后指针,其实并不是使用指针,而是两个下标一前一后走。所谓前后指针法就是定义两个下标cur和pre,pre初始为Left,cur是left+1的位置,记录keyi=left的位置的值,cur从当前位置依次往后找比a[keyi]小的值,如果比a[keyi]大或者等于,cur就++往后走,如果小于a[lkeyi]的值,则pre要++,然后交换cur和pre的位置,直到cur走到末尾。最后在交换pre和keyi位置的数值,返回keyi位置就可以了。

下面我们实现

int PartSort3(int* a, int left, int right)
{int pre = left;int cur = left + 1;int keyi = left;while (cur <=right){if (a[cur] >= a[keyi])//找小{cur++;//没找到就++继续往下走}else{pre++;Swap(&a[pre], &a[cur]);//找到了就和++pre位置交换cur++;}}Swap(&a[keyi], &a[pre]);keyi = pre;return keyi;
}

上述写法还可以优化,我们想,如果前几个cur位置都比a[keyi]小的话,也就是先++pre,再交换pre和cur位置,再++cur,可是本来最初cur就比pre提前一个位置,如果一组数据前几个数都是a[cur]<a[keyi]的话就一直是相同的cur位置和pre位置交换。我们可以写成

while (cur<=right)
{if (a[cur] < a[keyi] && ++pre != cur)//只有在pre++!=cur的情况下再交换{Swap(&a[cur], &a[pre]);}cur++;
}

这样就可以减少不必要无意义的交换了。

以上就是三种快排的实现方法,个人而言觉得第三种前后指针法更简便,更容易实现。当然这三种方法并没有本质区别和性能区别,掌握哪种都一样,都能掌握当然是最好的。

快速排序的特性总结:
1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫 快速 排序
2. 时间复杂度: O(N*logN)
3.空间复杂度: O(logN)
源代码
#include<stdio.h>
void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}int PartSort1(int* a, int left, int right)//霍尔
{int keyi = left;while (left < right){while (left<right&&a[right] >= a[keyi]){right--;}while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);return left;
}
int PartSort2(int* a, int left, int right)//挖坑
{int key = a[left];int hole = left;while (left < right){while (left<right && a[right]>key){right--;}a[hole] = a[right];hole = right;while (left<right && a[left]<key){left++;}a[hole] = a[left];hole = left;}a[hole] = key;return hole;
}
int PartSort3(int* a, int left, int right)//前后指针
{int pre = left;int cur = left + 1;int keyi = left;/*while (cur <=right){if (a[cur] >= a[keyi]){cur++;}else{pre++;Swap(&a[pre], &a[cur]);cur++;}}*/while (cur <= right){if (a[cur] < a[keyi] && ++pre != cur){Swap(&a[cur], &a[pre]);}cur++;}Swap(&a[keyi], &a[pre]);keyi = pre;return keyi;
}
void QuickSort(int* a, int begin,int end)
{if (begin >= end){return;}int keyi = PartSort3(a, begin, end);QuickSort(a, begin, keyi - 1);QuickSort(a, keyi+1, end);
}
int main()
{int a[] = { 5,7,4,3,10,8,2,6,9,1 };QuickSort(a, 0,(sizeof(a) / sizeof(int))-1);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/221551.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新国内可用使用GPT4.0,GPT语音对话,Midjourney绘画,DALL-E3文生图

一、前言 ChatGPT3.5、GPT4.0、GPT语音对话、Midjourney绘画&#xff0c;相信对大家应该不感到陌生吧&#xff1f;简单来说&#xff0c;GPT-4技术比之前的GPT-3.5相对来说更加智能&#xff0c;会根据用户的要求生成多种内容甚至也可以和用户进行创作交流。 然而&#xff0c;GP…

2023/12/20 work

1. 使用select完成TCP客户端程序 2. 使用poll完成TCP并发服务器 3. 思维导图

智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.水基湍流算法4.实验参数设定5.算法结果6.…

MongoDB的原子操作findAndReplace、findOneAndDelete和deleteMany

本文主要介绍MongoDB的原子操作findAndReplace、findOneAndDelete和deleteMany。 目录 MongoDB的原子操作一、findAndReplace二、findOneAndDelete三、deleteMany MongoDB的原子操作 MongoDB的原子操作指的是在单个操作中对数据库的数据进行读取和修改&#xff0c;并确保操作是…

OpenHarmony应用开发环境搭建指南

OpenHarmony的应用开发主要是基于Deveco Studio&#xff08;目前只支持Windows及Mac平台&#xff09;搭配相应的SDK进行&#xff0c;现对开发环境的搭建进行说明。 1:Deveco下载安装 下载对应平台的安装包即可。接下来以Windows平台为例&#xff0c;进行开发环境的搭建。 下载…

快速入门 — — 在Moonbeam上开发

访问熟悉的以太坊工具是一回事&#xff0c;获得顶级支持、拥有构建突破性跨链应用程序的资源是另一回事。 Moonbeam汇集了通过集成互操作性解决方案访问任何链的能力、具有完全以太坊兼容性的理想开发环境&#xff0c;以及使用Substrate在波卡上安全扩展的能力。 开始在Moonb…

AttributeError: module ‘_winapi‘ has no attribute ‘SYNCHRONIZE‘解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

使用包、Crate 和模块管理项目(下)

1、使用 use 关键字将路径引入作用域 在之前的示例中我们引用模块中的函数或者结构体之类的&#xff0c;都是需要用到相对路径或者绝对路径去引用&#xff0c;然尔在这里&#xff0c;有一种方法可以简化这个过程。我们可以使用 use 关键字创建一个短路径&#xff0c;然后就可以…

惯性导航基础知识学习---04惯导设备的使用

&#x1f308;武汉大学惯性导航课程合集是入门惯导的精品课程~ 作为导航路上的鼠鼠我&#xff0c;要开始学习惯性导航了~ 需要达到的要求是大致了解惯导的原理等~ 后期会陆续更新惯导相关的知识和笔记等~ &#x1f42c; 本blog为 武汉大学惯性导航课程 的记录~ 感谢团队提供的开…

mac电脑安装虚拟机教程

1、准备一台虚拟机&#xff0c;安装CentOS7 常用的虚拟化软件有两种&#xff1a; VirtualBoxVMware 这里我们使用VirtualBox来安装虚拟机&#xff0c;下载地址&#xff1a;Downloads – Oracle VM VirtualBox 001 点击安装 002 报错&#xff1a;he installer has detected an…

计网02-计算机网络参考模型

一、OSI七层参考模型 1、分层的思想 分层模型用于网络协议的设计方法&#xff0c;本质是将网络节点间复杂的通信问题分成若干简单的问题逐一解决&#xff0c;通过网络的层次去找问题&#xff0c;将复杂问题简单化。 2、OSI参考模型 由于早期计算机厂商使用的是私有的网络模…

map|动态规划|单调栈|LeetCode975:奇偶跳

作者推荐 【贪心算法】【中位贪心】.执行操作使频率分数最大 涉及知识点 单调栈 动态规划 map 题目 给定一个整数数组 A&#xff0c;你可以从某一起始索引出发&#xff0c;跳跃一定次数。在你跳跃的过程中&#xff0c;第 1、3、5… 次跳跃称为奇数跳跃&#xff0c;而第 2、…

【GoLang】哪些大公司正在使用Go语言

你见过哪些令你膛目结舌的代码技巧&#xff1f; 文章目录 你见过哪些令你膛目结舌的代码技巧&#xff1f;前言&#xff1a;哪些大公司正在使用Go语言谷歌&#xff08;Google&#xff09;&#xff1a;脸书&#xff08;Facebook&#xff09;&#xff1a;亚马逊&#xff08;Amazon…

LVS+keepalived小白都看得懂也不来看?

1 高可用集群 1.1 一个合格的集群应该具备的特性 1.负载均衡 LVS Nginx HAProxy F5 2.健康检查&#xff08;使得调度器检查节点状态是否可以正常运行&#xff0c;调度器&#xff08;负载均衡器&#xff09;也要做健康检查&#xff09;for调度器/节点服务器 keeplived hearb…

轻度听力损失的儿童需要早期干预吗?

一些宝宝在做听力筛查时总是不通过&#xff0c;进一步听力诊断发现宝宝有轻度的听力损失&#xff0c;刚知道这个消息时&#xff0c;家长可担心了&#xff0c;总想着宝宝是不是听不到啊&#xff1f;但是一段时间后&#xff0c;有些家长又会忽略宝宝的听力问题&#xff0c;因为部…

系列十四(面试)、谈谈你对StackOverflowError的理解?

一、StackOverflowError 1.1、概述 StackOverflowError是栈内存溢出的意思。栈中主要存储的是8种基本数据类型 引用类型 实例方法&#xff0c;栈的空间也是有限的&#xff0c;当存储进栈中的容量大于栈的最大容量时&#xff0c;就会报StackOverflowError的错误。 1.2、案例 …

Node.js使用Express框架写服务端接口时,如何将接口拆分到不同文件中

项目目录结构说明&#xff1a; node.js连接mysql数据库步骤可参考&#xff1a;Node.js 连接 MySQL | 菜鸟教程 1、拆分之前的写法&#xff0c;未区分模块&#xff0c;所有接口api都写在了入口文件app.js中&#xff1b; 需求&#xff1a;想要将接口api拆分成根据不同的业务模块…

大型语言模型:RoBERTa — 一种稳健优化的 BERT 方法

slavahead 一、介绍 BERT模型的出现BERT模型带来了NLP的重大进展。 BERT 的架构源自 Transformer&#xff0c;它在各种下游任务上取得了最先进的结果&#xff1a;语言建模、下一句预测、问答、NER标记等。 尽管 BERT 性能出色&#xff0c;研究人员仍在继续尝试其配置&#xff0…

旅游景区项目信息化建设运营方案:PPT47页,附下载

关键词&#xff1a;智慧景区解决方案&#xff0c;智慧景区建设&#xff0c;智慧景区开发与管理&#xff0c;智慧景区建设的意义&#xff0c;智慧景区管理 一、旅游景区项目信息化建设背景 1、旅游业发展迅速&#xff1a;随着旅游业的不断发展&#xff0c;游客对旅游体验的需求…

多级缓存:亿级流量的缓存方案

文章目录 一.多级缓存的引入二.JVM进程缓存三.Lua语法入门四.多级缓存1.OpenResty2.查询Tomcat3.Redis缓存预热4.查询Redis缓存5.Nginx本地缓存6.缓存同步 一.多级缓存的引入 传统缓存的问题 传统的缓存策略一般是请求到达Tomcat后&#xff0c;先查询Redis&#xff0c;如果未…