管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜E

老老规矩,看目录,平均每年2E,跟2D一样,D是全对,E是全错,侧面也看出10道题,大概是3A/B,3C,2D,2E,其实还是蛮平均的。但E为1道的情况居多。

第20题如果要硬猜,要不就是留给E吧
在这里插入图片描述
再把其他年份的第20题找出来,选了A或D,也就是说,第20题,验证了A的有效性,无效,就直接选E,有效,就还得验证B,B有效,就选D。
在这里插入图片描述
最后,第20题是分水岭,前面除了第17题,其他不大可能选E。即第20题之前若判断A,B都不充分,那么就选C。或者就把所有感觉要联立都选C,从C中找E,哈哈,不过这个概率说不定更低。

文章目录

    • 2023
      • 真题(2023-20)-E-不要被选项迷惑,不是取值范围,是两个不同未知数;-选项特点:一个大于号,一个小于号,两个未知数;
      • 真题(2023-21)-E-选项特点:两个已知X的值;
    • 2022
      • 真题(2022-20)-E;选项特点-一个已知,一个只有;
      • 真题(2022-23)-E-容易误判C,因为【一个等号+一个不等号】
    • 2021
      • 真题(2021-17)-E-要不要联立-要联立选C;(我爱说实话)两个条件看起来确实很像需要联立的样子
      • 真题(2021-23)-E-易误判选C,因为【一个不等号,一个等号】
    • 2020
      • 真题(2020-20)-E
      • 真题(2020-22)-E-条件轮换对称+结论要求具体某个量(不对称)-条件未知量轮换对称:轮换对称:a→b→c→d轮换位置后条件表达式不变;很容易误选C,因为【一个等号+一个不等号】
    • 2019
      • 真题(2019-22)-E选项蒙猜-特别难的结论就直接过;(我爱说实话,这个第一眼也像可以联合)
    • 2018
      • 真题(2018-21)-E;(我爱说实话,这个第一眼也像可以联合)
    • 2017
      • 真题(2017-20)-E;选项特点:两个已知X的值(这个特点没啥用,因为ABCD都出现)
    • 2016
      • 真题(2016-20)-E-看起来好像联合可以出答案的样子
    • 2015
      • 真题(2015-20)-E-看起来好像联合可以出答案的样子;-选项特点:和等式,积等式。
    • 2014
    • 2013
      • 真题(2013-17)-E-特别难的结论选E(我爱说实话,考试想不到这个点);选E选项往往不需要联合,联合的选C的几率高

选E选项(条件1和条件2单独都不充分,联合起来也不充分)
对学员的掌握程度要求更高
判断误差的罪魁祸首,是E,在不确定的情况下,宁愿把E选成别的选项,也不要把别的选项选成E。
1.往往不需要复杂的推理或计算。通过特殊反例,常识,逻辑关系可看出来。
2.选E选项往往不需要联合,联合的选C的几率高。
真题:2013年17题;2012年21题;

自从13年出现“可确定”型题目,E选项绝大部分出自此类题目
1.特别难的结论就直接过
真题:19年22题,13年01,17题
2.不满足“要啥给啥”原则
(1)条件(比例关系)与所求结论(具体量)信息类型不匹配;
(2)条件(范围)与所求结论(具体量)信息类型不匹配;
真题:13年10月20题(缺少相关年份真题)
3.条件轮换对称+结论要求具体某个量(不对称)
条件未知量轮换对称;轮换对称:a→b→c→d轮换位置后条件表达式不变;
真题:20年22题。

2023

真题(2023-20)-E-不要被选项迷惑,不是取值范围,是两个不同未知数;-选项特点:一个大于号,一个小于号,两个未知数;

-几何-解析几何;

在这里插入图片描述
在这里插入图片描述

真题(2023-21)-E-选项特点:两个已知X的值;

-应用题-路程
在这里插入图片描述

在这里插入图片描述

2022

真题(2022-20)-E;选项特点-一个已知,一个只有;

-简单算术题
20.将 75 名学生分成 25 组,每组 3 人,则能确定女生人数。
(1)已知全是男生的组数和全是女生的组数。
(2)只有1男的组和只有1女的组数相等。

在这里插入图片描述

真题(2022-23)-E-容易误判C,因为【一个等号+一个不等号】

-数列-等比数列-等比中项;+一元二次函数
23.已知𝑎,𝑏为实数,则能确定𝑎的值。
(1)𝑎,𝑏,𝑎 + 𝑏成等比数列。
(2)𝑎(𝑎 + 𝑏) > 0。
在这里插入图片描述

2021

真题(2021-17)-E-要不要联立-要联立选C;(我爱说实话)两个条件看起来确实很像需要联立的样子

-应用题-工程
17.清理一块场地,则甲乙丙三人能在2天内完成。
(1)甲乙两人需要3天完成。
(2)甲丙两人需要4天完成。
在这里插入图片描述

真题(2021-23)-E-易误判选C,因为【一个不等号,一个等号】

-应用题-路程
23.某人开车去上班,有一段路因维修限速通行,则可以算出此人上班的距离。
(1)路上比平时多用了半小时。
(2)已知维修路段的通行速度。
在这里插入图片描述

2020

真题(2020-20)-E

-代数-方程-出现了两个及以上未知量,而数量关系却少于未知量的个数-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
20、共有n 辆车,则能确定人数。
(1)若每辆车 20 座,1 车未满。
(2)若每辆车 12 座,则少 10 个座。
在这里插入图片描述
在这里插入图片描述

真题(2020-22)-E-条件轮换对称+结论要求具体某个量(不对称)-条件未知量轮换对称:轮换对称:a→b→c→d轮换位置后条件表达式不变;很容易误选C,因为【一个等号+一个不等号】

-E-代数-方程-出现了两个及以上未知量,而数量关系却少于未知量的个数-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
22、已知甲、乙、丙三人共捐款 3500 元,则能确定每人的捐款金额。
(1)三人的捐款金额各不相同。
(2)三人的捐款金额都是 500 的倍数。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2019

真题(2019-22)-E选项蒙猜-特别难的结论就直接过;(我爱说实话,这个第一眼也像可以联合)

-E-算术-整除
22、设 n 为正整数,则能确定n 除以 5 的余数。
(1) 已知 n 除以 2 的余数。
(2) 已知n 除以 3 的余数。
在这里插入图片描述
在这里插入图片描述

2018

真题(2018-21)-E;(我爱说实话,这个第一眼也像可以联合)

-应用题-简单算术
21.甲购买了若干件 A 玩具,乙购买了若干件 B 玩具送给幼儿园,甲比乙少花了 100 元,则能确定甲购买的玩具件数。
(1)甲与乙共购买了 50 件玩具。
(2)A 玩具的价格是 B 玩具的 2 倍。
在这里插入图片描述

E。本题考查方程组相关知识。假设甲的玩具价格为每件x元,共买了A件,乙的玩具价格为每件y元,共买了B件,题干前提条件为Ax+100=By,其中,x,y,A,B均为未知数。条件(1)为A+B=50 ,条件(2)为x=2y,显然,无论条件(1)、(2)单独,还是联合,未知数个数都多于方程个数,无唯一解,不能确定未知数A的值,都不充分。
在这里插入图片描述
在这里插入图片描述

2017

真题(2017-20)-E;选项特点:两个已知X的值(这个特点没啥用,因为ABCD都出现)

-比例应用题-增长率
20.能确定某企业产值的月平均增长率。
(1)已知一月份的产值。
(2)已知全年的总产值答案。
在这里插入图片描述

在这里插入图片描述
答案应该是E。(否则2017年没有选E)
首先理解“月平均增长率x”:只与第一个月和最后一个月的产值有关。如:一月a、二、三、四…十一、十二月3a: a ( 1 + x ) 11 = 3 a a(1+x)^{11}=3a a(1+x)11=3a,得 ( 1 + x ) 11 = 3 (1+x)^{11}=3 (1+x)11=3,得: x = 3 11 − 1 x=\sqrt[11]{3}-1 x=113 1
∴(2)全年总产值是无关的。更改为“12月的产值”,才选C。

2016

真题(2016-20)-E-看起来好像联合可以出答案的样子

-应用题-溶液
20.将 2 升甲酒精和 1 升乙酒精混合,得到丙酒精,则能确定甲、乙两种酒精的浓度。
(1)1 升甲酒精和 5 升乙酒精混合后的浓度是丙酒精浓度的 1 2 \frac{1}{2} 21倍。
(2)1 升甲酒精和 2 升乙酒精混合后的中毒是丙酒精浓度的 2 3 \frac{2}{3} 32倍。
在这里插入图片描述

2015

真题(2015-20)-E-看起来好像联合可以出答案的样子;-选项特点:和等式,积等式。

-数列-等差数列
20.设{ a n a_n an}是等差数列,则能确定数列{ a n a_n an}
(1) a 1 + a 6 = 0 a_1+a_6=0 a1+a6=0
(2) a 1 a 6 = − 1 a_1a_6=-1 a1a6=1
在这里插入图片描述

在这里插入图片描述

2014

我14年没有E,没人来管管的吗

2013

真题(2013-17)-E-特别难的结论选E(我爱说实话,考试想不到这个点);选E选项往往不需要联合,联合的选C的几率高

-E-算术-质合数
17. p = m q + 1 p = mq + 1 p=mq+1为质数。
(1) m m m为正整数, q q q为质数。
(2) m , q m,q m,q均为质数。
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/221980.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux目录和文件管理

一.Linux目录结构 Linux操作系统在定位文件或目录位置时,使用斜杠“ / ”进行分割(区别于Windows操作系统中的反斜杠“ \ ”)。整个树形目录结构中,使用独立的一个" / "表示根目录,根目录是Linux操作系统文…

vue2 组件传递数据

向子组件传递数据通过Props 1.创建子组件 详细步骤&#xff1a; 1.在components创建子组件 2.等父组件接受到参数后通过Props来接受父组件传递过来的数据 <template><div id"app"><h2>title:{{ title }}</h2><p>tips:{{ tips }}<…

androidStudio版本下载链接记录

androidStudio 最新官网版本&#xff1a; 下载 Android Studio 和应用工具 - Android 开发者 | Android DevelopersAndroid Studio 提供了一些应用构建器以及一个已针对 Android 应用进行优化的集成式开发环境 (IDE)。立即下载 Android Studio。https://developer.android.g…

数字化时代的智能支持:亚马逊云科技轻量应用服务器技术领先

轻量应用服务器是一种简化运维、门槛低的弹性服务器&#xff0c;它的"轻"主要体现在几个方面&#xff1a;开箱即用、应用优质、上手简洁、投入划算、运维简便以及稳定可靠。相较于普通的云服务器&#xff0c;轻量应用服务器简化了云服务的操作难度、使用和管理流程&a…

MAC苹果笔记本电脑如何彻底清理垃圾文件软件?

苹果电脑以其流畅的操作系统和卓越的性能而备受用户喜爱。然而&#xff0c;随着时间的推移&#xff0c;系统可能会积累大量垃圾文件&#xff0c;影响性能。本文将介绍苹果电脑怎么清理垃圾文件的各种方法&#xff0c;以提升系统运行效率。 CleanMyMac X是一款专业的Mac清理软件…

轻量级web开发框架Flask本地部署及无公网ip远程访问界面

文章目录 前言1. 安装部署Flask2. 安装Cpolar内网穿透3. 配置Flask的web界面公网访问地址4. 公网远程访问Flask的web界面 前言 本篇文章讲解如何在本地安装Flask&#xff0c;以及如何将其web界面发布到公网上并进行远程访问。 Flask是目前十分流行的web框架&#xff0c;采用P…

华为云之ECS云产品快速入门

华为云之ECS云产品快速入门 一、ECS云服务器介绍二、本次实践目标三、创建虚拟私有云VPC1.虚拟私有云VPC介绍2.进入虚拟私有云VPC管理页面3.创建虚拟私有云4.查看创建的VPC 四、创建弹性云服务器ECS——Linux1.进入ECS购买界面2.创建弹性云服务器(Linux)——基础配置步骤3.创建…

杰发科技AC7840——在Eclipse环境下使用Jlink调试

序 杰发给的代码里面已经做代码相关配置&#xff0c;搭建好eclipse环境即可运行&#xff0c;搭建步骤还是比较简单的。 参考文章 如何使用Eclipse搭配JLink来调试HelloWold应用程序&#xff1f;-电子发烧友网 软件链接 杰发科技Eclipse的sample代码里面的doc文章&#xff…

大模型赋能“AI+电商”,景联文科技提供高质量电商场景数据

据新闻报道&#xff0c;阿里巴巴旗下淘天集团和国际数字商业集团都已建立完整的AI团队。 淘天集团已经推出模特图智能生成、官方客服机器人、万相台无界版等AI工具&#xff0c;训练出了自己的大模型产品 “星辰”&#xff1b; 阿里国际商业集团已成立AI Business&#xff0c;…

c语言力扣题目:消失的数字(有关时间复杂度O(N²)O(N))以及对异或操作符的更深入的理解(如何用人脑的十进制去考量二进制)

目录 Way One :暴力求解,时间复杂度为 O(N) 代码1 Way Two : 时间复杂度限制到 O(N) 代码及其详解 如题 Way One :暴力求解,时间复杂度为 O(N) 大体思路:比如这里我们需要处理的整型数组是"3,0,1",我们可以用冒泡排序或者 qsort函数将他从大到小进行排序成"…

c# winform chart 单个柱形设置

目前实现到第三张图形,有可以实现四张图形的请大佬帮助。 实现到第三张图的设置如下 private void Form1_Load(object sender, EventArgs e) {// 隐藏标题//chart1.Titles.Clear();// 隐藏图例chart1.Legends.Clear();// 隐藏 Y 轴的网格线和标签chart1.ChartAreas[0].AxisY.…

ansible在ubuntu下的安装和使用

ansible在ubuntu下的安装和使用 本文目录 ansible在ubuntu下的安装和使用安装和配置虚拟机配置安装和验证 简单使用创建 ansible cfg 和 inventory 文件创建剧本并执行使用 ansible vault 加密 安装和配置 中文文档&#xff1a;http://www.ansible.com.cn/docs/intro_installa…

试图加载格式不正确的程序。 (异常来自 HRESULT:0x8007000B)

试图加载格式不正确的程序。 (异常来自 HRESULT:0x8007000B) c#调用动态库是报错 目前平台改为x64

字符串函数内存函数(从零到一)【C语言】

长度不受限制的字符串函数&#xff1a;strcpy,strcat,strcmp 长度受限制的字符串函数&#xff1a;strncpy,strncat,strncmp strlen strlen函数是库函数中我们最常使用的函数&#xff0c;它可以求出字符串的长度(不包含‘\0’) 使用方法 通过前面对strlen函数的模拟实现我们知…

智能优化算法应用:基于饥饿游戏算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于饥饿游戏算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于饥饿游戏算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.饥饿游戏算法4.实验参数设定5.算法结果6.…

xcode无线真机调试详细图文步骤

步骤一、 步骤二&#xff1a; 步骤三&#xff1a; 配置完到这里&#xff0c;点击真机右键&#xff0c;菜单栏并未出现connect via ip address 选项&#xff0c;也没出现无线连接的小地球图标&#xff0c;别慌&#xff0c;接着进行下一步操作即可。 步骤四&#xff1a; 1.打开…

【Linux】冯诺依曼体系结构与操作系统及其进程

> 作者简介&#xff1a;დ旧言~&#xff0c;目前大二&#xff0c;现在学习Java&#xff0c;c&#xff0c;c&#xff0c;Python等 > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;了解冯诺依曼体系结构与操作系统&#xff0c;掌握…

使用ultralytics(YOLOv8)实现RT-Detr

b站视频&#xff1a;https://www.bilibili.com/video/BV12C4y1S75H/ 1 使用ultralytics&#xff08;YOLOv8&#xff09;实现RT-Detr https://github.com/ultralytics/ultralytics/blob/a5735724c54a9f5bcb239c151fefbd1337d7123d/docs/zh/models/rtdetr.md 2 安装 YOLOv8安装…

分享一个项目——Sambert UI 声音克隆

文章目录 前言一、运行ipynb二、数据标注三、训练四、生成总结 前言 原教程视频 项目链接 运行一个ipynb&#xff0c;就可操作 总共四步 1&#xff09;运行ipynb 2&#xff09;数据标注 3&#xff09;训练 4&#xff09;生成 一、运行ipynb 等运行完毕后&#xff0c;获得该…

【powershell】Windows环境powershell 运维之历史文件压缩清理

&#x1f984; 个人主页——&#x1f390;开着拖拉机回家_Linux,大数据运维-CSDN博客 &#x1f390;✨&#x1f341; &#x1fa81;&#x1f341;&#x1fa81;&#x1f341;&#x1fa81;&#x1f341;&#x1fa81;&#x1f341; &#x1fa81;&#x1f341;&#x1fa81;&am…