智能优化算法应用:基于梯度算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于梯度算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于梯度算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.梯度算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用梯度算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.梯度算法

梯度算法原理请参考:https://blog.csdn.net/u011835903/article/details/122156112
梯度算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

梯度算法参数如下:

%% 设定梯度优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明梯度算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/222135.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue中最重要的点,双向数据绑定是什么?

一、什么是双向绑定 我们先从单向绑定切入单向绑定非常简单,就是把Model绑定到View,当我们用JavaScript代码更新Model时,View就会自动更新双向绑定就很容易联想到了,在单向绑定的基础上,用户更新了View,Mo…

多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现BiTCN-Multihea…

vp与vs联合开发-串口通信

模拟串口通信 1.配置虚拟串口驱动 winform 实现串口通信 1.模拟串口和winform程序通信 2.模拟串口通信 控制拍照功能

ubuntu保存分辨率失效解决办法

在VM虚拟机中,遇到修改ubuntu分辨率后,重启后又重置的解决办法。 目前我的ubuntu版本是:ubuntu 18.04.6 版本。 1.首先,在你喜欢的目录建立一个.sh 脚本文件。 终端执行命令:sudo vim xrandr.sh 2.按 i 进入编辑状…

【数据结构】五、数组与广义表

目录 一、定义 二、计算数组元素地址 三、稀疏矩阵快速转置 稀疏矩阵的表示 稀疏矩阵快速转置 四、广义表 一、定义 我们所熟知的一维、二维数组的元素是原子类型。广义表中的元素除了原子类型还可以是另一个线性表。当然所有的数据元素仍然属于同一类型。 这里的数组可…

VSCode安装PYQT5

安装PYQT5 pip install PyQt5 -i https://pypi.tuna.tsinghua.edu.cn/simple pip install PyQt5-tools -i https://pypi.tuna.tsinghua.edu.cn/simple 获得Python环境位置 查看函数库安装位置 pip show 函数库名 通过查询函数库,了解到python安装位置为 C:\User…

在 Kubernetes 上部署 Python 3.7、Chrome 和 Chromedriver(版本 114.0.5735.90)的完整指南

一、构建基础镜像 docker build -f /u01/isi/DockerFile . -t thinking_code.com/xhh/crawler_base_image:v1.0.2docker push thinking_code.com/xhh/crawler_base_image:v1.0.2 二、K8s运行Pod 三、DockerFile文件 # 基于镜像基础 FROM python:3.7# 设置代码文件夹工作目录…

泛微e-cology XmlRpcServlet文件读取漏洞复现

漏洞介绍 泛微新一代移动办公平台e-cology不仅组织提供了一体化的协同工作平台,将组织事务逐渐实现全程电子化,改变传统纸质文件、实体签章的方式。泛微OA E-Cology 平台XmRpcServlet接口处存在任意文件读取漏洞,攻击者可通过该漏洞读取系统重要文件 (如数据库配置…

python编程(1)之通用引脚GPIO使用

在之前的章节中,小编带领大家学习了:如何构建esp32的python开发环境-CSDN博客 今天小编带领大家开始学习python编程的第一节,通用引脚。esp32c3核心板是一个高度集成,功能丰富的模块,来看下他的功能分布: 我…

【小黑嵌入式系统第十一课】μC/OS-III程序设计基础(一)——任务设计、任务管理(创建基本状态内部任务)、任务调度、系统函数

上一课: 【小黑嵌入式系统第十课】μC/OS-III概况——实时操作系统的特点、基本概念(内核&任务&中断)、与硬件的关系&实现 文章目录 一、任务设计1.1 任务概述1.2 任务的类型1.2.1 单次执行类任务(运行至完成型&#…

centos7安装开源日志系统graylog5.1.2

安装包链接:链接:https://pan.baidu.com/s/1Zl5s7x1zMWpuKfaePy0gPg?pwd1eup 提取码:1eup 这里采用的shell脚本安装,脚本如下: 先使用命令产生2个参数代入到脚本中: 使用pwgen生成password_secret密码 …

Linux之进程(五)(进程控制)

目录 一、进程创建 1、fork函数创建进程 2、fork函数的返回值 3、fork常规用法 4、fork调用失败的原因 二、进程终止 1、进程终止的方式 2、进程退出码 3、进程的退出方法 三、进程等待 1、进程等待的必要性 2、wait函数 3、waitpid函数 四、进程程序替换 1、概念…

利用ffmpeg cv2取h265码流视频(转换图片灰屏问题解决)

利用海康威视相机拍出来的视频是H265格式的,相比于常规的H264编码,压缩率更高,但因此如果直接用正常取流方法读取,会出现无法读取的情况 1. 如图h265码流取出图片为灰屏 2 、解决灰屏问题 import subprocess import cv2# 将h265流…

100GPTS计划-AI学术AcademicRefiner

地址 https://chat.openai.com/g/g-LcMl7q6rk-academic-refiner https://poe.com/AcademicRefiner 测试 减少相似性 增加独特性 修改http://t.csdnimg.cn/jyHwo这篇文章微调 专注于人工智能、科技、金融和医学领域的学术论文改写,秉承严格的专业和学术标准。 …

使用opencv实现图像中几何图形检测

1 几何图形检测介绍 1.1 轮廓(contours) 什么是轮廓,简单说轮廓就是一些列点相连组成形状、它们拥有同样的颜色、轮廓发现在图像的对象分析、对象检测等方面是非常有用的工具,在OpenCV 中使用轮廓发现相关函数时候要求输入图像是二值图像,这…

华为安防监控摄像头

华为政企42 华为政企 目录 上一篇华为政企城市一张网研究报告下一篇华为全屋wifi6蜂鸟套装标准

【数据结构】二叉树的模拟实现

前言:前面我们学习了堆的模拟实现,今天我们来进一步学习二叉树,当然了内容肯定是越来越难的,各位我们一起努力! 💖 博主CSDN主页:卫卫卫的个人主页 💞 👉 专栏分类:数据结构 👈 &…

大创项目推荐 深度学习 机器视觉 人脸识别系统 - opencv python

文章目录 0 前言1 机器学习-人脸识别过程人脸检测人脸对其人脸特征向量化人脸识别 2 深度学习-人脸识别过程人脸检测人脸识别Metric Larning 3 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习 机器视觉 人脸识别系统 该项目…

LabVIEW开发自动驾驶的双目测距系统

LabVIEW开发自动驾驶的双目测距系统 随着车辆驾驶技术的不断发展,自动驾驶技术正日益成为现实。从L2级别的辅助驾驶技术到L3级别的受条件约束的自动驾驶技术,车辆安全性和智能化水平正在不断提升。在这个过程中,车辆主动安全预警系统发挥着关…

CloudCanal x Debezium 打造实时数据流动新范式

简述 Debezium 是一个开源的数据订阅工具,主要功能为捕获数据库变更事件发送到 Kafka。 CloudCanal 近期实现了从 Kafka 消费 Debezium 格式数据,将其 同步到 StarRocks、Doris、Elasticsearch、MongoDB、ClickHouse 等 12 种数据库和数仓,…