机器学习——分类评价指标

【说明】文章内容来自《机器学习——基于sklearn》,用于学习记录。若有争议联系删除。

1、评价指标

        对于模型的评价往往会使用损失函数和评价指标,两者的本质是一致的。一般情况下,损失函数应用于训练过程,而评价指标应用于测试过程。对于回归问题,往往使用均方误差等指标评价模型,也使用回归损失函数作为评价指标。而分类问题的评价指标一般会选择准确率、ROC曲线和AUC等,其评价指标如下:

术语sklearn函数
混淆矩阵confusion_matrix
准确率accuracy_score
召回率reacall_score
f1_scoref1_score
ROC曲线roc_curve
AUCroc_auc_score
分类评估报告classification_report

2、混淆矩阵

        在机器学习领域,混淆矩阵(confusion matrix)是衡量分类模型准确度的方法中最基本、最直观、计算最简单的方法。混淆矩阵又称为可能性表格或错误矩阵,用来呈现算法性能的可视化效果,通常应用于监督学习。混淆矩阵由n行n列组成,其每一列表预测值,每一行代表实际的类别。例如,一个人得病了,但检查结果说他没病,那么他“假没病”,也叫假阴性(FN);一个人得病了,医生判断他有病,那么他是“真有病”,也叫阳性(TP);一个人没得病,医生检查结果却说他有病,那么他是“假有病”,也叫假阳性(FP);一个人没得病,医生检查结果也说他没病,那么他是“真没病”,也叫真阴性(TN)4种结局就是2X2=4的混淆矩阵,如表所示。

        FN、TP、FP、TN共包含4个字母P、N、T、F,英文分别是 Positive、Negative、True、False。True和 False 代表预测本身的结果是正确还是不正确,Positive 和 Negative则是代表预测的方向是正向还是负向。
        每一行之和表示该类别的真实样本数量,每一列之和表示被预测为该类别的样本数量。预测性分类模型肯定是越准越好。因此混淆矩阵中TP与 TN的数值越大越好,而FP与FN的数值越小越好。
混淆矩阵具有如下特性:

  • 样本全集=TPUFPUFNUTN。
  • 任何一个样本属于且只属于4个集合中的一个,即它们没有交集。

2.1 混淆矩阵示例

        某系统用来对猫(cat)、狗(dog)、免子(rabbit)进行分类。现共有27只动物,包括8只猫、6条狗和13只兔子。混淆矩阵如表所示。

        在这个混淆矩阵中,实际有8只猫,但是系统将其中3只猫预测成了狗;实际有6条狗,其中有一条狗被预测成了免子,两条狗被预测成了猫;实际有13只兔子,其中有2只兔子被预测成了狗。
        sklearn,metrics模块提供了confusion_matrix函数,格式如下:

sklearn.metrics.confusion_matrix(y_true, y_pred,labels)

【参数说明】

  • y_true:真实目标值
  • y_pred:估计器预测目标值
  • labels:指定类别对应的数字

示例:

from sklearn.metrics import confusion_matrix
y_true = [2,0,2,2,0,1]
y_pred = [0,0,2,2,0,2]
print('confusion_matrix\n', confusion_matrix(y_true, y_pred))
y_true = ['cat', 'ant', 'cat', 'cat', 'ant', 'bird']
y_pred = ['ant', 'ant', 'cat', 'cat', 'ant', 'cat']
print('confusion_matrix\n', confusion_matrix(y_true, y_pred, labels = ['ant','bird', 'cat']))

【运行结果】

真实值中,共0,1,2三个特征。

2.2 准确率

准确率(accuracy)是最常用的分类性能指标。准确率是预测正确的样本数与总样本数的比值。其计算公式:

ACC= \frac{TP+TN}{P+N}

sklearn.metrics模块提供了accuracy_score函数,格式如下:

 sklearn.metrics.accuracy_score(y_true, y_pred, normalize)

【参数说明】

  • y_true:真实目标值
  • y_pred:估计器预测目标值
  • normalize:是否正则化。默认为True,返回正确分类的比例;False返回正确分类的样本数。

示例:

import numpy as np
from sklearn.metrics import accuracy_score
y_true = [0,1,2,3]
y_pred = [0,2,1,3]
print(accuracy_score(y_true, y_pred))
print(accuracy_score(y_true, y_pred, normalize = False))

2.3 精确率

        精确率(precision)又称为查准率。精确率只针对预测正确的正样本而不是所有预测正确的样本,是正确预测的正样本数与预测正样本总数的比值,其计算公式如下:

precision = \frac{TP}{TP+FP}

sklearn.metrics模块提供了precision_score函数,格式如下:

sklearn.metrics.precision_score(y_true, y_pred)

示例:

import numpy as np
from sklearn.metrics import precision_score
y_true = [1,0,1,1]
y_pred = [0,1,1,0]
p = precision_score(y_true, y_pred)
print(p)

2.4 召回率

        召回率(recall)是有关覆盖面的度量,它反映有多少正例被分为正例,又称查全率。查准率和召回率是一对矛盾的度量。查准率高时,召回率往往偏低;而召回率高时,查准率往往偏低。
召回率是正确预测的正例数与实际正例总数之比,计算公式如下

Recall = \frac{TP}{TP+FN}
sklearn.metrics模块提供了recall_score函数,格式如下:

sklearn.metrics.recall _score(y_true, y_pred, average)

        以信息检索为例,刚开始在页面上显示的信息是用户可能最感兴趣的信息,此时查准率高,但只显示了部分数据,所以召回率低;随着用户不断地下拉滚动条显示其余信息,信息与用户兴趣的匹配程度逐渐降低,查准率不断下降,召回率逐渐上升;当下拉到信息底部时,此时的信息是最不符合用户兴趣的,因此查准率最低,但所有的信息都已经展示,召回率最高。

3、F1分数

F1分数(F1 score)用于衡量二分类模型的精确度,是精确率和召回率的调和值,其变化范围为0~1。F1分数的计算公式如下:

F1=\frac{2*TP}{2*TP+FN+FP}=\frac{2*precision*Recall}{Precision+Recall}

sklearn.metrics 模块提供了f1_score函数。格式如下:

sklearn.metrics.f1_score(y_true, predictions, average = 'micro

【参数说明】

  • y_true:真实目标值
  • predictions:估计器预测目标值

示例:

from sklearn import metrics
y_test = [0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2]
y_pred = [0,0,1,1,0,0,0,2,2,0,1,1,1,1,2,1,1,2,2,1,2,2,2,2,2,2,1,1,2,2]
F1 = metrics.f1_score(y_test, y_pred, average = 'micro')
print("F1", F1)

4、ROC曲线

        ROC全称是“受试者工作特征”(Receiver Operating Characteristic)曲线,用于描述混淆矩阵中FPR-TPR两个量之间的相对变化情况。ROC曲线的横轴是FPR,纵轴是TPR。ROC曲线用于描述样本的真实类别和预测概率。

ROC曲线中的4个点如下:

  • 点(0,1):即 FPR=0,TPR=1,意味着FN=0且FP=0,所有的样本都正确分类
  • 点(1,0):即 FPR=1,TPR=0,最差分类器,避开了所有正确答案。
  • 点(0,0):即 FPR=TPR=0,FP=TP=0,分类器把每个样本都预测为负类。
  • 点(1,1):即 FPR=TPR=1,分类器把所有样本都预测为正类。

sklearn,metrics 模块提供了roc_curve函数,格式如下:

sklearn.metrics.roc_ curve(y_true, y_score)

【参数说明】

  • y_true:每个样本的真实类别,必须为0(反例)、1(正例)标记。
  • y_score:预测得分,可以是正类的估计概率

示例:

import numpy as np
from sklearn import metrics
y = np.array([1,1,2,2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label = 2)
print(fpr)
print(tpr)
print(thresholds)
from sklearn.metrics import auc
print(metrics.auc(fpr, tpr))

5、AUC

        AUC(Area Under Curve)是指 ROC曲线下的面积,由于ROC曲线一般都处于y=x这条直线的上方,所以AUC 的取值范围为0.5~1。AUC 只能用于评价二分类,直观地评价分类器的好坏,值越大越好。
AUC 对模型性能的判断标准如下:

  • AUC=1,是完美分类器。采用这个预测模型时,存在至少一个阈值能得出完美预测。在绝大多数预测的场合,不存在完美分类器。
  • 0.5<AUC<1,优于随机猜测。若对这个分类器(模型)设定合适的阈值,它就才预测价值。
  • AUC=0.5,跟随机猜测一样(例如抛硬币),模型没有预测价值。
  • AUC<0.5,比随机猜测还差。但是,只要总是反预测而行,就优于随机猜测。

sklearn.metrics模块提供了roc_auc_score函数,格式如下:

sklearn.metrics.roc_auc_score(y_true, y_score)

【参数说明】

  • y_true:每个样本的真实类别,必须为0(反例)、1(正例)标记。
  • y_score:预测得分,可以是正类的估计概率。

示例:

import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0,0,1,1])
y_score = np.array([0.1,0.4,0.35,0.8])
print(roc_auc_score(y_true, y_score))

6、分类评估报告

        Sklearn 中的classification_report函数用于显示主要分类指标的文本报告,显示每个类的精确度、召回率、F1值等信息。classification_report函数格式如下:

sklearn.metrics.classification _report(y_true, y_pred, labels, target_names)

【参数说明】

  • y_true:真实目标值。
  • y_pred:估计器预测目标值。
  • labels:指定类别对应的数字。
  • target_names:目标类别名称。

示例:

from sklearn.metrics import classification_report
y_true = [0,1,2,2,2]
y_pred = [0,0,2,2,1]
target_names = ['class 0','class 1','class 2']
print(classification_report(y_true, y_pred, target_names = target_names))

【运行结果】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/222359.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入浅出堆排序: 高效算法背后的原理与性能

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《linux深造日志》 《高效算法》 ⛺️生活的理想&#xff0c;就是为了理想的生活! &#x1f4cb; 前言 &#x1f308;堆排序一个基于二叉堆数据结构的排序算法&#xff0c;其稳定性和排序效率在八大排序中也…

maven学习和maven聚合工程搭建

1.学习maven maven的概念 项目管理工具 &#xff0c;对jar进行依赖管理&#xff0c;编译&#xff0c;打包&#xff0c;单元测试&#xff0c;安装&#xff0c;部署&#xff0c;贯穿整个项目 为什么要学maven 要解决的问题&#xff1a; 不同的开发工具开发出来的项目目录结构…

计算机基础:网络基础

目录 一.网线制作 1.制作所需要工具 网线制作标准 ​编辑 2.水晶头使用 3.网线钳使用 4.视频教学 二.集线器、交换机介绍 1.OSI七层模型 2.TCP/IP四层参考模型 3.集线器、交换机。路由器介绍 集线器 交换机 路由器 区别 三.路由器的配置 1.路由器设置 说明书 设…

IDEA版SSM入门到实战(Maven+MyBatis+Spring+SpringMVC) -Spring的AOP前奏

第一章 AOP前奏 1.1 代理模式 代理模式&#xff1a;我们需要做一件事情&#xff0c;又不期望自己亲力亲为&#xff0c;此时&#xff0c;可以找一个代理【中介】 我们【目标对象】与中介【代理对象】不能相互转换&#xff0c;因为是“兄弟”关系 1.2 为什么需要代理【程序中…

【大模型】快速体验百度智能云千帆AppBuilder搭建知识库与小助手

文章目录 前言千帆AppBuilder什么是千帆AppBuilderAppBuilder能做什么 体验千帆AppBuilderJava知识库高考作文小助手 总结 前言 前天&#xff0c;在【百度智能云智算大会】上&#xff0c;百度智能云千帆AppBuilder正式开放服务。这是一个AI原生应用开发工作台&#xff0c;可以…

技术分享-Jenkins

持续集成及Jenkins介绍 软件开发生命周期叫SDLC&#xff08;Software Development Life Cycle&#xff09;&#xff0c;集合了计划、开发、测试、部署过程。 在平常的开发过程中&#xff0c; 需要频繁地&#xff08;一天多次&#xff09;将代码集成到主干&#xff0c;这个叫持…

实力强的大模型都有哪些超能力?

实力强的大模型都有哪些超能力&#xff1f; 前几日&#xff0c;人工智能研究公司OpenAI CEO山姆奥特曼&#xff08;Sam Altman&#xff09;在谈及人工智能这项技术的潜力以及人们对它的担忧时&#xff0c;曾表示“AI发展速度快得吓人&#xff0c;就像停不下来的龙卷风。”可见&…

软件测试:最强面试题整理出炉附答案,一点点小总结,建议收藏

一、Web自动化测试 1.Selenium中hidden或者是display &#xff1d; none的元素是否可以定位到&#xff1f; 不能,可以写JavaScript将标签中的hidden先改为0&#xff0c;再定位元素 2.Selenium中如何保证操作元素的成功率&#xff1f;也就是说如何保证我点击的元素一定是可以点…

CMU\谷歌等最新研究综述:面向通用机器人的基础模型

构建能够在任何环境中无缝操作、使用各种技能处理不同物体和完成多样化任务的通用机器人&#xff0c;一直是人工智能领域的长期目标。然而&#xff0c;不幸的是&#xff0c;大多数现有的机器人系统受到限制——它们被设计用于特定任务、在特定数据集上进行训练&#xff0c;并在…

deCasteljau 递推

递推函数 P i r ( t ) ( 1 − t ) P i r − 1 ( t ) t P i 1 r − 1 ( t ) &#xff0c; \begin{equation} \bm{P}_{i}^r (t) (1-t) \bm{P}_{i}^{r-1} (t) t \bm{P}_{i1}^{r-1} (t)&#xff0c; \end{equation} Pir​(t)(1−t)Pir−1​(t)tPi1r−1​(t)&#xff0c;​​ …

在ClickHouse数据库中启用预测功能

在这篇博文中&#xff0c;我们将介绍如何将机器学习支持的预测功能与 ClickHouse 数据库集成。ClickHouse 是一个快速、开源、面向列的 SQL 数据库&#xff0c;对于数据分析和实时分析非常有用。该项目由 ClickHouse&#xff0c; Inc. 维护和支持。我们将探索它在需要数据准备以…

Java对接腾讯多人音视频房间回调接口示例

在前面我们已经对接好了腾讯多人音视频房间相关内容&#xff1a;Java对接腾讯多人音视频房间示例 为了完善业务逻辑&#xff0c;我们还需要对接它的一些回调接口 官方文档地址 主要就下面这些 这里因为比较简单直接上代码 里面有些工具类和上一章一样这里就没贴&#xff0c;需要…

【高效开发工具系列】eclipse部署web项目

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

15张超级有用的电商模版

电商即电子商务(Electronic Commerce) &#xff0c;是利用计算机技术、网络技术和远程通信技术&#xff0c;实现电子化、数字化和网络化的整个商务过程。本专题包含电商运营策略、电商平台底层逻辑、营销流程设计等模板内容。 如果你是一个电商小白&#xff0c;你需要以下的电…

大型医院PACS系统源码,影像存储与传输系统源码,支持多种图像处理及三维重建功能

PACS系统是医院影像科室中应用的一种系统&#xff0c;主要用于获取、传输、存档和处理医学影像。它通过各种接口&#xff0c;如模拟、DICOM和网络&#xff0c;以数字化的方式将各种医学影像&#xff0c;如核磁共振、CT扫描、超声波等保存起来&#xff0c;并在需要时能够快速调取…

Enge问题解决教程

目录 解决问题的一般步骤&#xff1a; 针对"Enge问题"的具体建议&#xff1a; 以下是一些普遍适用的解决问题的方法&#xff1a; 以下是一些更深入的Enge浏览器问题和解决办法&#xff1a; 浏览器性能问题&#xff1a; 浏览器插件与网站冲突&#xff1a; 浏览…

新型智慧视频监控系统:基于TSINGSEE青犀边缘计算AI视频识别技术的应用

边缘计算AI智能识别技术在视频监控领域的应用有很多。这项技术结合了边缘计算和人工智能技术&#xff0c;通过在摄像头或网关设备上运行AI算法&#xff0c;可以在现场实时处理和分析视频数据&#xff0c;从而实现智能识别和分析。目前来说&#xff0c;边缘计算AI视频智能技术可…

Leetcode 45 跳跃游戏 II

题意理解&#xff1a; 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。 还是从初始坐标i0的位置到达最后一个元素&#xff0c;但是问题不是能不能跳到&#xff0c;而是最少几步能跳到最后一个元素。 目标&…

Java|IDEA 中添加编译参数 --add-exports

方法1 File > Settings > Build, Execution, Deployment > Compiler > Java Compiler > Javac Options > Override compiler parameters per-module 点击&#xff1a; 点击OK 双击Compliation options&#xff0c;输入后回车&#xff1a; 方法2 找到出错…

阻塞 IO(BIO)

文章目录 阻塞 IO(BIO)模型等待队列头init_waitqueue_headDECLARE_WAIT_QUEUE_HEAD 等待队列项使用方法驱动程序应用程序模块使用参考 阻塞 IO(BIO) 模型 等待队列是内核实现阻塞和唤醒的内核机制。 等待队列以循环链表为基础结构&#xff0c;链表头和链表项分别为等待队列头和…