yolo-nas无人机高空红外热数据小目标检测(教程+代码)

前言

  • YOLO-NAS是目前最新的YOLO目标检测模型。
  • 从一开始,它就在准确性方面击败了所有其他 YOLO 模型。
  • 与之前的 YOLO 模型相比,预训练的 YOLO-NAS 模型能够以更高的准确度检测更多目标。
  • 但是我们如何在自定义数据集上训练 YOLO NAS?

这将是我们本文的目标——在自定义数据集上训练不同的 YOLO NAS 模型。
在这里插入图片描述

YOLO-NAS训练

YOLO-NAS 的主要主张是它可以比以前的模型更好地检测更小的物体。尽管我们可以运行多个推理实验来分析结果,但在具有挑战性的数据集上对其进行训练将使我们有更好的理解。为此,我们将使用三个可用的预训练 YOLO-NAS 模型运行四个训练实验。为此,我们选择无人机热成像检测数据集。

在实验过程中,我们将遍历 YOLO-NAS 的完整训练流程。

  1. 用于训练 YOLO NAS 的物体检测数据集
  2. 在自定义数据集上训练 YOLO NAS
  3. 微调 YOLO NAS 模型
  4. 使用经过训练的 YOLO NAS 模型对测试图像进​​行推理
  5. YOLO NAS 训练模型视频推理结果
  6. 结论

训练 YOLO NAS 的物体检测数据集

用于训练 YOLO NAS 的物体检测数据集
我们先来熟悉一下无人机高空红外热数据集。

它包含夜间无人机热图像。鉴于无人机的高空记录,大多数物体看起来都很小。这使得该数据集对于大多数目标检测模型来说都难以解决。然而,它是完美的自定义数据集来训练 YOLO-NAS 以检查其在小物体上的准确性。

该数据集包含 5 个对象类别的 2898 张热图像:

  • 自行车
  • 其他车辆
  • 不在乎

数据集已包含训练、验证和测试分割。有 2008 个训练样本、287 个验证样本和 571 个测试样本。该数据集已经以 YOLO 注释格式存在。

以下是数据集中的一些未注释的地面实况图像。
在这里插入图片描述
很明显,除了汽车之外,如果没有适当的注释,人眼无法看到地面上的其他物体。

要了解每个对象的位置,请查看一些带注释的图像
在这里插入图片描述

接下来,我们将深入研究本文的编码部分。下载本文的代码后,您将发现三个笔记本。

YOLO_NAS_Fine_Tuning.ipynb
YOLO_NAS_Large_Fine_Tuning.ipynb
inference.ipynb
YOLO_NAS_Fine_Tuning.ipynb我们将非常详细地浏览这些笔记本。这两个包含在自定义数据集上训练 YOLO NAS 以及稍后使用经过训练的模型运行推理所需的所有步骤。培训笔记本包含下载数据集的代码。

以下代码将训练三个 YOLO NAS 模型:

YOLO NAS (小)
YOLO NAS m(中型)
YOLO NAS l (大)
在开始之前,您可以安装super-gradients我们在整个训练和推理过程中需要的软件包。尽管笔记本包含执行此操作的命令,您也可以使用以下命令安装它:

pip install

数据集下载和目录结构
接下来的几个代码块下载数据集并将其解压到当前目录,我们将在此处跳过。所有笔记本和数据集都存在于父数据集目录中,其结构如下

hit-uav
├── dataset.yaml
├── images
│   ├── test
│   ├── train
│   └── val
└── labels├── test├── train└── val

YOLO NAS模型训练

由于我们正在训练三个不同的模型,因此我们需要稍微自动化该过程。我们可以定义一个包含三个模型名称的列表,并根据该列表设置检查点目录。这还将加载适当的模型,因为列表中的模型名称与 API 中的模型名称相匹配super-gradients。

models_to_train = ['yolo_nas_s','yolo_nas_m','yolo_nas_l'
]CHECKPOINT_DIR = 'checkpoints'for model_to_train in models_to_train:trainer = Trainer(experiment_name=model_to_train, ckpt_root_dir=CHECKPOINT_DIR)model = models.get(model_to_train, num_classes=len(dataset_params['classes']), pretrained_weights="coco")trainer.train(model=model, training_params=train_params, train_loader=train_data, valid_loader=val_data)

三个训练实验将依次运行,所有模型检查点将保存在各自的目录中。

YOLO NAS 训练参数

在我们开始微调过程之前,训练参数是最重要的组成部分。这是我们定义要训练的纪元数、要监控的验证指标以及学习率等的地方。、

models_to_train = ['yolo_nas_s','yolo_nas_m','yolo_nas_l'
]CHECKPOINT_DIR = 'checkpoints'for model_to_train in models_to_train:trainer = Trainer(experiment_name=model_to_train, ckpt_root_dir=CHECKPOINT_DIR)model = models.get(model_to_train, num_classes=len(dataset_params['classes']), pretrained_weights="coco")trainer.train(model=model, training_params=train_params, train_loader=train_data, valid_loader=val_data)

微调结果

在这里插入图片描述

YOLO NAS 模型对测试图像进​​行推理

该数据集包含一个测试分割,我们保留该测试分割用于推理目的。您可以执行笔记本中的代码单元inference.ipynb来运行推理实验。它促成了一些事情:

首先,它从检查点目录加载经过最佳训练的 YOLO NAS 权重。
然后它对测试图像运行推理。执行此操作时,代码会将推理结果保存在inference_results/images具有原始图像名称的目录中。
获得结果后,笔记本通过在预测图像上重叠地面实况注释来显示一组图像。
最后一步将告诉我们训练模型错过了哪些对象以及模型是否做出了错误的预测。

让我们通过可视化一些推理预测来开始我们的分析。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/222741.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于ERC20代币协议实现的去中心化应用平台

文章目录 内容简介设计逻辑ERC20TokenLoanPlatform 合约事件结构体状态变量函数 Remix 运行实现部署相关智能合约存款和取款贷款和还款 源码地址 内容简介 使用 solidity 实现的基于 ERC20 代币协议的借贷款去中心化应用平台(极简版)。实现存款、取款、贷款、还款以及利息计算的…

[Angular] 笔记 7:模块

Angular 中的模块(modules) 是代码在逻辑上的最大划分,它类似于C, C# 中的名字空间: module 可分为如下几种不同的类型: 使用模块的第一个原因是要对代码进行逻辑上的划分,第二个非常重要的原因是为了实现懒惰加载(lazy loading)&…

Koordinator 支持 K8s 与 YARN 混部,小红书在离线混部实践分享

作者:索增增(小红书)、宋泽辉(小红书)、张佐玮(阿里云) 背景介绍 Koordinator 是一个开源项目,基于阿里巴巴在容器调度领域多年累积的经验孵化诞生,目前已经支持了 K8s…

hiveserver负载均衡配置

一.安装nginx 参数我的另一篇文章:https://mp.csdn.net/mp_blog/creation/editor/135152478 二.配置nginx服务参数 worker_processes 1; events { worker_connections 1024; } stream { upstream hiveserver2 { # least_conn; # 使用最少连接路由…

【Amazon 实验①】使用Amazon WAF做基础 Web Service 防护

文章目录 一、实验介绍二、实验环境准备三、验证实验环境四、Web ACLs 配置 & AWS 托管规则4.1 Web ACLs 介绍4.2 Managed Rules 托管规则4.3 防护常见威胁类型(sql注入,XSS)4.4 实验步骤4.4.1 创建Web ACL4.4.2 测试用例4.4.3 测试结果4…

csrf自动化检测调研

https://github.com/pillarjs/understanding-csrf/blob/master/README_zh.md CSRF 攻击者在钓鱼站点&#xff0c;可以通过创建一个AJAX按钮或者表单来针对你的网站创建一个请求&#xff1a; <form action"https://my.site.com/me/something-destructive" metho…

The Cherno C++笔记 03

目录 Part 07 How the C Linker Works 1.链接 2.编译链接过程中出现的错误 2.1 缺少入口函数 注意:如何区分编译错误还是链接错误 注意&#xff1a;入口点可以自己设置 2.2 找不到自定义函数 2.2.1缺少声明 2.2.2自定义函数与引用函数不一致 2.3 在头文件中放入定义 …

编译原理----算符优先级的分析(自底向上)

自底向上分析的分类如下所示&#xff1a; 算符优先分析 算符优先分析只规定算符之间的优先关系&#xff0c;也就是只考虑终结符之间的优先关系。 &#xff08;一&#xff09;若有文法G&#xff0c;如果G没有形如A->..BC..的产生式&#xff0c;其中B和C为非终结符&#xff…

rtsp视频在使用unity三维融合播放后的修正

1 rtsp 接入 我们使用unity UE 等三维渲染引擎中使用c编写插件来接入rtsp 视频。同时做融合的时候&#xff0c;和背景的三维颜色要一致&#xff0c;这就要使用视频融合修正技术。包括亮度&#xff0c;对比度&#xff0c;饱和度的修正。在单纯颜色上的修正可以简单使用rgb->…

NXP iMX8MM 通过 TFTP和 NFS 启动示例

By Toradex秦海 1). 简介 嵌入式 Linux 设备开发调试时候为了方便部署各种配置和修改常用的一种方法就是通过网络启动&#xff0c;具体就是将 Linux Kernel&#xff08;以及 Device tree/Device Tree overlays) 从开发主机的 TFTP 服务加载&#xff0c; Linux rootfs 通过开发…

听GPT 讲Rust源代码--src/tools(18)

File: rust/src/tools/rust-analyzer/crates/ide-ssr/src/from_comment.rs 在Rust源代码中的from_comment.rs文件位于Rust分析器&#xff08;rust-analyzer&#xff09;工具的ide-ssr库中&#xff0c;它的作用是将注释转换为Rust代码。 具体来说&#xff0c;该文件实现了从注…

【即插即用篇】YOLOv8改进实战 | 引入 Involution(内卷),用于视觉识别的新一代神经网络!涨点神器!

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成…

Centos7在安装Graylog时新安装MongoDB报错端口不监听服务不启动无法运行启动失败

由于虚拟机服务器上需要安装Graylog需要安装MongoDB&#xff0c;尝试官网下载安装包&#xff0c;和yum安装均无法正常启动&#xff0c;折腾了好几天&#xff0c;重装了十几次&#xff0c;网上搜索了很多很多资料&#xff0c;均无法正常运行&#xff0c;百度上搜索各种文档&…

华为端口隔离简单使用方法同vlan下控制个别电脑不给互通

必须得用access接口&#xff0c;hybrid口不行 dhcp enable interface Vlanif1 ip address 192.168.1.1 255.255.255.0 dhcp select interface interface MEth0/0/1 interface GigabitEthernet0/0/1 port link-type access port-isolate enable group 1 interface GigabitEther…

Node.js-模块化(二)

1. 模块化的基本概念 1.1 什么是模块化 模块化是指解决一个复杂问题时&#xff0c;自顶向下逐层将系统拆分成若干模块的过程。对于整个系统来说&#xff0c;模块是可组合、分解和更换的单元。 1.2 编程领域中的模块化 编程领域中的模块化&#xff0c;就是遵守固定的规则&…

Python之Django项目的功能配置

1.创建Django项目 进入项目管理目录&#xff0c;比如&#xff1a;D盘 执行命令&#xff1a;diango-admin startproject demo1 创建项目 如果提示diango命令不存在&#xff0c;搜索diango-admin程序的位置&#xff0c;然后加入到环境变量path中。 进入项目&#xff0c;cd demo…

嵌入式开发网络配置——windows连热点,开发板和电脑网线直连

目录 电脑 WiFi 上网&#xff0c;开发板和电脑直连 使用场景 设置VMware虚拟机的网络配置 Ubuntu设置——版本18.04 ​编辑 windows设置 开发板设置 原因&#xff1a;虚拟机Linux移植可执行程序到开发板失败 最后发现虚拟机的Linuxping不通开发板 下面是我的解决方法 …

微软的word文档中内置背景音乐步骤(打开自动播放)

目录 一、前言 二、操作步骤 一、前言 有时候需要在word文档里面打开的时候就自动播放音乐或者音频&#xff0c;那么可以用微软的word来按照操作步骤去这样完成。 如果没有微软office的&#xff0c;可以下载这个是2021专业版的。因为office只能免费使用一段时间&#xff0c…

猜数字游戏 C语言xdoj490

问题描述 猜数字游戏是令游戏机随机产生一个 100 以内的正整数&#xff0c;用户输入一个数对其进行猜测&#xff0c;需要你编写程序自动对其与随机产生的被猜数进行比较&#xff0c;并提示大了&#xff08;“Too big”&#xff09;&#xff0c;还是小了&#xff08;“Too smal…

Java小案例-Sentinel的实现原理

前言 Sentinel是阿里开源的一款面向分布式、多语言异构化服务架构的流量治理组件。 主要以流量为切入点&#xff0c;从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。 核心概念 要想理解一个新的技…