conda环境下更改虚拟环境安装路径

1 引言

在Anaconda中如果没有指定路径,虚拟环境会默认安装在anaconda所安装的目录下,但如果默认环境的磁盘空间不足,无法满足大量安装虚拟环境的需求,此时我们需要更改虚拟环境的安装路径,有以下两种方案:

  • 方案1: 每次创建虚拟环境时手动指定存放路径

  • 方案2:修改Anaconda默认的虚拟环境存放路径

本文将介绍conda环境下更改虚拟环境安装路径的方法。

2 更改虚拟环境安装路径

2.1 查看所有虚拟环境及其路径

conda env list

执行命令后,显示出当前系统所有的虚拟环境

# conda environments:
#                                                     
base                     C:\ProgramData\anaconda3     
pt                    *  C:\Users\Admin\.conda\envs\pt

2.2 查看虚拟环境默认位置

conda config --show

执行命令后,显示如下:

add_anaconda_token: True
add_pip_as_python_dependency: True
aggressive_update_packages:- ca-certificates- certifi- openssl
allow_conda_downgrades: False
allow_cycles: True
allow_non_channel_urls: False
allow_softlinks: False
allowlist_channels: []
always_copy: False
always_softlink: False
always_yes: None
anaconda_anon_usage: True
anaconda_upload: None
auto_activate_base: True
auto_stack: 0
auto_update_conda: True
bld_path:
changeps1: True
channel_alias: https://conda.anaconda.org
channel_priority: flexible
channel_settings: []
channels:- http://mirrors.aliyun.com/anaconda/pkgs/main- defaults
client_ssl_cert: None
client_ssl_cert_key: None
clobber: False
conda_build: {}
create_default_packages: []
croot: C:\Users\Admin\conda-bld
custom_channels:pkgs/main: https://repo.anaconda.compkgs/r: https://repo.anaconda.compkgs/msys2: https://repo.anaconda.compkgs/pro: https://repo.anaconda.com
custom_multichannels:defaults:- https://repo.anaconda.com/pkgs/main- https://repo.anaconda.com/pkgs/r- https://repo.anaconda.com/pkgs/msys2local:
debug: False
default_channels:- https://repo.anaconda.com/pkgs/main- https://repo.anaconda.com/pkgs/r- https://repo.anaconda.com/pkgs/msys2
default_python: 3.11
default_threads: None
deps_modifier: not_set
dev: False
disallowed_packages: []
download_only: False
dry_run: False
enable_private_envs: False
env_prompt: ({default_env})
envs_dirs:- C:\Users\Admin\.conda\envs- C:\ProgramData\anaconda3\envs- C:\Users\Admin\AppData\Local\conda\conda\envs
error_upload_url: https://conda.io/conda-post/unexpected-error
execute_threads: 1
experimental: []
extra_safety_checks: False
fetch_threads: 5
force: False
force_32bit: False
force_reinstall: False
force_remove: False
ignore_pinned: False
json: False
local_repodata_ttl: 1
migrated_channel_aliases: []
migrated_custom_channels: {}
no_plugins: False
non_admin_enabled: True
notify_outdated_conda: True
number_channel_notices: 5
offline: False
override_channels_enabled: True
path_conflict: clobber
pinned_packages: []
pip_interop_enabled: False
pkgs_dirs:- C:\ProgramData\anaconda3\pkgs- C:\Users\Admin\.conda\pkgs- C:\Users\Admin\AppData\Local\conda\conda\pkgs
proxy_servers: {}
quiet: False
remote_backoff_factor: 1
remote_connect_timeout_secs: 9.15
remote_max_retries: 3
remote_read_timeout_secs: 60.0
repodata_fns:- current_repodata.json- repodata.json
repodata_threads: None
report_errors: None
restore_free_channel: False
rollback_enabled: True
root_prefix: C:\ProgramData\anaconda3
safety_checks: warn
sat_solver: pycosat
unsatisfiable_hints_check_depth: 2
update_modifier: update_specs
use_index_cache: False
use_local: False
use_only_tar_bz2: False
verbosity: 0
verify_threads: 1
(pt) PS D:\code\cv> conda env list
# conda environments:
#                                                     
base                     C:\ProgramData\anaconda3     
pt                    *  C:\Users\Admin\.conda\envs\pt(pt) PS D:\code\cv> conda config --show
add_anaconda_token: True          
add_pip_as_python_dependency: True
aggressive_update_packages:       - ca-certificates               - certifi                       - openssl                       
allow_conda_downgrades: False     
allow_cycles: True                
allow_non_channel_urls: False
allow_softlinks: False
allowlist_channels: []
always_copy: False
always_softlink: False
always_yes: None
anaconda_anon_usage: True
anaconda_upload: None
auto_activate_base: True
auto_stack: 0
auto_update_conda: True
bld_path:
changeps1: True
channel_alias: https://conda.anaconda.org
channel_priority: flexible
channel_settings: []
channels:- http://mirrors.aliyun.com/anaconda/pkgs/main- defaults
client_ssl_cert: None
client_ssl_cert_key: None
clobber: False
conda_build: {}
create_default_packages: []
croot: C:\Users\Admin\conda-bld
custom_channels:pkgs/main: https://repo.anaconda.compkgs/r: https://repo.anaconda.compkgs/msys2: https://repo.anaconda.compkgs/pro: https://repo.anaconda.com
custom_multichannels:defaults:- https://repo.anaconda.com/pkgs/main- https://repo.anaconda.com/pkgs/r- https://repo.anaconda.com/pkgs/msys2local:
debug: False
default_channels:- https://repo.anaconda.com/pkgs/main- https://repo.anaconda.com/pkgs/r- https://repo.anaconda.com/pkgs/msys2
default_python: 3.11
default_threads: None
deps_modifier: not_set
dev: False
disallowed_packages: []
download_only: False
dry_run: False
enable_private_envs: False
env_prompt: ({default_env})
envs_dirs:- C:\Users\Admin\.conda\envs- C:\ProgramData\anaconda3\envs- C:\Users\Admin\AppData\Local\conda\conda\envs
error_upload_url: https://conda.io/conda-post/unexpected-error
execute_threads: 1
experimental: []
extra_safety_checks: False
fetch_threads: 5
force: False
force_32bit: False
force_reinstall: False
force_remove: False
ignore_pinned: False
json: False
local_repodata_ttl: 1
migrated_channel_aliases: []
migrated_custom_channels: {}
no_plugins: False
non_admin_enabled: True
notify_outdated_conda: True
number_channel_notices: 5
offline: False
override_channels_enabled: True
path_conflict: clobber
pinned_packages: []
pip_interop_enabled: False
pkgs_dirs:- C:\ProgramData\anaconda3\pkgs- C:\Users\Admin\.conda\pkgs- C:\Users\Admin\AppData\Local\conda\conda\pkgs
proxy_servers: {}
quiet: False
remote_backoff_factor: 1
remote_connect_timeout_secs: 9.15
remote_max_retries: 3
remote_read_timeout_secs: 60.0
repodata_fns:- current_repodata.json- repodata.json
repodata_threads: None
report_errors: None
restore_free_channel: False
rollback_enabled: True
root_prefix: C:\ProgramData\anaconda3
safety_checks: warn
sat_solver: pycosat
separate_format_cache: False
shortcuts: True
show_channel_urls: True
signing_metadata_url_base: None
solver: classic
solver_ignore_timestamps: False
ssl_verify: True
subdir: win-64
subdirs:- win-64- noarch
target_prefix_override:
track_features: []
unsatisfiable_hints: True
unsatisfiable_hints_check_depth: 2
update_modifier: update_specs
use_index_cache: False
use_local: False
use_only_tar_bz2: False
verbosity: 0
verify_threads: 1

在输出的内容中找到envs_dirs,这里显示的有三个路径,第一个就是虚拟环境默认的安装路径。

envs_dirs:- C:\Users\Admin\.conda\envs- C:\ProgramData\anaconda3\envs- C:\Users\Admin\AppData\Local\conda\conda\envs

2.3 添加环境路径

在D盘根目录下创建.conda文件夹,通过命令将此路径添加到虚拟环境默认安装路径

conda config --add envs_dirs D:/.conda

添加完成后,再次查看

envs_dirs:- D:\.conda- C:\Users\Admin\.conda\envs- C:\ProgramData\anaconda3\envs- C:\Users\Admin\AppData\Local\conda\conda\envs

D:\.conda已经成为默认安装路径(第一个安装路径)

注意:如果D:\.conda在路径中已经存在,但不是排在第一个,执行命令后,D:\.conda路径会变成第一个位置,即成为默认安装路径。

2.4 创建虚拟环境

conda create -n wav2lip pyton==3.9

执行命令后,虚拟环境已经安装到D:\.conda目录下

 3 conda环境介绍

Conda是一个开源的包管理器和环境管理系统,用于安装、运行和更新包和其依赖项。它是由Anaconda, Inc.(以前称为Continuum Analytics)创建,用于支持Python程序开发,但它也可以用来管理来自其他语言的包。Conda使得包管理和环境隔离变得简单,对于处理多个项目中的依赖关系和版本控制尤其有用。

7fe216bee95143b88dd373480ba452ee.webp

Conda是一个强大的工具,对于管理复杂的Python项目和环境至关重要。它简化了包管理和环境设置,使得Python开发更加容易和高效。通过使用Conda,开发者可以确保他们的项目在不同机器和操作系统上都能以相同的方式运行,大大提高了项目的可移植性和可复现性。

3.1 Conda的核心功能

  • 包管理:Conda作为包管理器,可以安装、更新和移除Python包。它通过Conda仓库,如Anaconda Cloud或Conda Forge,来获取包。

  • 环境管理:Conda允许用户创建隔离的环境,以便于不同项目可以拥有不同的库和/或Python版本。这在处理不兼容的依赖项或不同项目的需求时非常有用。

  • 跨平台:Conda支持Linux、OS X和Windows,并允许创建跨平台的Python环境。

  • 开源:Conda是开源的,允许用户查看源代码并对其进行改进。

3.2 使用Conda的优势

  • 解决依赖性问题:Conda可以自动解决包之间的依赖关系,简化了安装过程。

  • 环境隔离:创建独立的环境可以避免包之间的版本冲突,使得项目更稳定。

  • 易于使用:Conda的命令行界面简单直观,易于学习和使用。

  • 广泛的包支持:Conda支持Python的许多流行库和应用程序。

  • 社区支持:作为一个流行的工具,Conda拥有一个活跃的社区,用户可以从中找到支持和资源。

3.3 Conda环境的创建和管理

  • 创建新环境:使用conda create命令创建一个新环境,可以指定Python版本和所需的包。

  • 激活环境:使用conda activate命令来激活环境。

  • 安装包:在激活的环境中使用conda install命令来安装新的包。

  • 环境列表:使用conda env list来查看所有可用的Conda环境。

  • 移除环境:使用conda env remove命令来移除不再需要的环境。

3.4 应用场景

  • 数据科学和机器学习:Conda非常适合于数据科学和机器学习项目,这些项目通常需要多个库和框架。

  • 软件开发:软件开发者使用Conda来管理项目依赖,确保一致的开发环境。

  • 教学和学术研究:教师和研究人员使用Conda来创建具有特定库和工具的环境,用于教学和研究。

3.5 常用命令

Conda 是一个开源的包管理器和环境管理器,广泛用于管理Python环境和包。以下是一些常用的 Conda 命令:

  • 安装 Conda 包:

    • conda install [package-name]: 安装指定的包。
  • 创建和管理环境:

    • conda create --name [env-name]: 创建一个新的环境。
    • conda activate [env-name]: 激活指定环境。
    • conda deactivate: 退出当前环境。
    • conda env list: 列出所有可用的环境。
  • 管理包:

    • conda list: 在当前环境中列出所有已安装的包。
    • conda update [package-name]: 更新指定的包。
    • conda remove [package-name]: 移除指定的包。
  • 搜索包:

    • conda search [package-name]: 搜索可用的包版本。
  • 环境导出和导入:

    • conda env export > environment.yml: 导出当前环境的配置到一个YAML文件。
    • conda env create -f environment.yml: 使用YAML文件创建一个新环境。
  • 更新 Conda:

    • conda update conda: 更新 Conda 到最新版本。
  • 查看 Conda 信息:

    • conda info: 显示关于 Conda 的信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/222768.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据仓库-数据治理小厂实践

一、简介 数据治理贯穿数仓中数据的整个生命周期,从数据的产生、加载、清洗、计算,再到数据展示、应用,每个阶段都需要对数据进行治理,像有些比较大的企业都是有自己的数据治理平台或者会开发一些便捷的平台,对于没有平…

使用OpenCV DNN模块进行人脸检测

内容的一部分来源于贾志刚的《opencv4应用开发、入门、进阶与工程化实践》。这本书我大概看了一下,也就后面几章比较感兴趣,但是内容很少,并没有想像的那种充实。不过学习还是要学习的。 在实际工程项目中,并不是说我们将神经网络…

【Unity】【WebRTC】如何用Unity而不是浏览器接收远程画面

【背景】 之前几篇我们讨论了如何设置信令服务器,如何发送画面给远端以及如何用浏览器查看同步画面,今天来讨论如何实现Unity内部接收画面。 看本篇之前请先看过之前将web服务器设置和基本远程画面功能的几篇博文。(同专栏下查看&#xff09…

el-select如何去掉placeholder属性

功能要求是&#xff1a;当el-select的disabled属性为true的时候不展示“请选择”字样 1、要去掉 el-select 元素的 placeholder 属性&#xff0c;可以在代码中将其设置为空字符串。 <el-select placeholder"" ...></el-select> 注意&#xff1a;这种方…

Linux目录切换相关命令@cd/pwd

目录 基础指令 cd命令原型命令的搭配以及效果命令本身cd cd 指定目录 基础指令 pwd命令原型pwd 总结&#xff1a; 基础指令 cd cd 取自英文 Change Directory 的首字母组成。 英文的中文翻译为&#xff1a;更改目录。 很明显该指令是用来更改目录的。 命令原型 cd [Linux路径…

Java设计模式之单例模式以及如何防止通过反射破坏单例模式

单例模式 单例模式使用场景 ​ 什么是单例模式&#xff1f;保障一个类只能有一个对象&#xff08;实例&#xff09;的代码开发模式就叫单例模式 ​ 什么时候使用&#xff1f; 工具类&#xff01;&#xff08;一种做法&#xff0c;所有的方法都是static&#xff0c;还有一种单…

27. 过滤器

Filter(过滤器)简介 Filter 的基本功能是对 Servlet 容器调用 Servlet 的过程进行拦截&#xff0c;从而在 Servlet 进行响应处理的前后实现一些特殊的功能。在 Servlet API 中定义了三个接口类来开供开发人员编写 Filter 程序&#xff1a;Filter, FilterChain, FilterConfigFi…

【数据结构】队列的使用|模拟实现|循环队列|双端队列|面试题

一、 队列(Queue) 1.1 概念 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有先进先出FIFO(First In First Out) 入队列&#xff1a;进行插入操作的一端称为队尾&#xff08;Tail/Rear&#xff09; 出队列…

TSINGSEE青犀可视化视频云平台JT/T1078接入能力在智慧物流中的应用

一、引言 随着科技的快速发展和全球贸易的蓬勃发展&#xff0c;智慧物流成为了现代物流业的重要发展方向。智慧物流通过引入先进的信息技术&#xff0c;实现了物流过程的自动化、智能化和信息化&#xff0c;从而提高了物流效率和准确性。在这个过程中&#xff0c;JT/T1078接入…

【分享】4个方法打开PDF文件

PDF是很多人工作中经常使用的电子文档格式&#xff0c;但是可能有些刚接触的小伙伴不知道用什么工具来打开PDF文件&#xff0c;今天小编就来分享一下4种常用的工具。 1. 使用浏览器 只要有电脑基本都会安装一到两款浏览器&#xff0c;其实浏览器也可以用来打开PDF文件。 只需…

在x64上构建智能家居(home assistant)(二)(新版Debain12)连接Postgresql数据库

新版数据库安装基本和旧版相同,大部分可以参考旧版本在x64上构建智能家居(home assistant)&#xff08;二&#xff09;连接Postgresql数据库_homeassist 数据库-CSDN博客 新版本的home assistant系统安装,我在原来写的手顺上直接修改了,需要的可以查看在x64上构建智能家居(home…

探索未来交通!空客、宝马开启新一轮“量子计算挑战赛”

12月6日&#xff0c;空中客车公司和宝马集团共同发起了一项名为 “量子交通探索”的全球量子计算挑战赛&#xff0c;以应对航空和汽车领域最紧迫的挑战——这些挑战对于传统计算机而言仍然是难以克服的。 这项挑战是首创性的&#xff0c;它将两个全球行业领导者聚集在一起&…

Wavesurfer.js绘制波形图

HTML使用Wavesurfer.js 要使用wavesurfer.js&#xff0c;首先需要在HTML文件中引入Wavesurfer.js库&#xff0c;然后创建一个音频元素并将其添加到页面中。接下来&#xff0c;初始化Wavesurfer实例并配置相关选项。以下是一个简单的示例&#xff1a; 在HTML文件中引入Wavesurf…

jvm内存模型

1、简介 JVM在执行Java程序时&#xff0c;会把它管理的内存划分为若干个的区域&#xff0c;每个区域都有自己的用途和创建销毁时间。如下图所示&#xff0c;可以分为两大部分&#xff0c;线程私有区和共享区。下图是根据自己理解画的一个JVM内存模型架构图&#xff1a; 2、线程…

LeetCode刷题--- 电话号码的字母组合

个人主页&#xff1a;元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题 http://t.csdnimg.cn/yUl2I 【C】 http://t.csdnimg.cn/6AbpV 数据结构与算法 http://t.csdnimg.cn/hKh2l 前言&#xff1a;这个专栏主要讲述递归递归、搜…

机器学习算法(12) — 集成技术(Boosting — Xgboost 分类)

一、说明 时间这是集成技术下的第 4 篇文章&#xff0c;如果您想了解有关集成技术的更多信息&#xff0c;您可以参考我的第 1 篇集成技术文章。 机器学习算法&#xff08;9&#xff09; - 集成技术&#xff08;装袋 - 随机森林分类器和...... 在这篇文章中&#xff0c;我将解释…

LangChain入门指南:定义、功能和工作原理

LangChain入门指南&#xff1a;定义、功能和工作原理 引言LangChain是什么&#xff1f;LangChain的核心功能LangChain的工作原理LangChain实际应用案例如何开始使用LangChain 引言 在人工智能的浪潮中&#xff0c;语言模型已成为推动技术革新的重要力量。从简单的文本生成到复…

ChatGPT一周年:开源语言大模型的冲击

自2022年末发布后&#xff0c;ChatGPT给人工智能的研究和商业领域带来了巨大变革。通过有监督微调和人类反馈的强化学习&#xff0c;模型可以回答人类问题&#xff0c;并在广泛的任务范围内遵循指令。在获得这一成功之后&#xff0c;人们对LLM的兴趣不断增加&#xff0c;新的LL…

《每天一分钟学习C语言·七》指针、字节对齐等

1、 对于二维数组如a[3][4]可以当做有三个元素的一维数组&#xff0c;每个元素包含四个小元素。 2、 printf(“%-5d”, i); //负号表示左对齐&#xff0c;5d表示空五个光标的位置 3、 栈&#xff1a;先进后出&#xff0c;堆&#xff1a;先进先出 4、 &#xff08;1&#xff…

yolo-nas无人机高空红外热数据小目标检测(教程+代码)

前言 YOLO-NAS是目前最新的YOLO目标检测模型。从一开始&#xff0c;它就在准确性方面击败了所有其他 YOLO 模型。与之前的 YOLO 模型相比&#xff0c;预训练的 YOLO-NAS 模型能够以更高的准确度检测更多目标。但是我们如何在自定义数据集上训练 YOLO NAS&#xff1f; 这将是我…