BIT-6-指针(C语言初阶学习)

1. 指针是什么
2. 指针和指针类型
3. 野指针
4. 指针运算
5. 指针和数组
6. 二级指针
7. 指针数组


1. 指针是什么?


指针是什么?
指针理解的2个要点:

  1. 指针是内存中一个最小单元的编号,也就是地址
  2. 平时口语中说的指针,通常指的是指针变量,是用来存放内存地址的变量

总结:指针就是地址,口语中说的指针通常指的是指针变量。

那我们就可以这样理解:

内存

指针变量

我们可以通过&(取地址操作符)取出变量的内存其实地址,把地址可以存放到一个变量中,这个变量就是指针变量

#include <stdio.h>
int main()
{int a = 10;//在内存中开辟一块空间int *p = &a;//这里我们对变量a,取出它的地址,可以使用&操作符。//a变量占用4个字节的空间,这里是将a的4个字节的第一个字节的地址存放在p变量中,p就是一个之指针变量。return 0;
}

总结:

指针变量,用来存放地址的变量。(存放在指针中的值都被当成地址处理)。
那这里的问题是:

  • 一个小的单元到底是多大?(1个字节)
  • 如何编址?

经过仔细的计算和权衡我们发现一个字节给一个对应的地址是比较合适的。

对于32位的机器,假设有32根地址线,那么假设每根地址线在寻址的时候产生高电平(高电压)和低电平(低电压)就是(1或者0);

那么32根地址线产生的地址就会是:

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000001
...
11111111 11111111 11111111 11111111

这里就有2的32次方个地址。
每个地址标识一个字节,那我们就可以给 (2^32Byte == 2^32/1024KB ==
2^32/1024/1024MB==2^32/1024/1024/1024GB == 4GB) 4G的空间进行编址。
同样的方法,那64位机器,如果给64根地址线,那能编址多大空间,自己计算。

这里我们就明白:

  • 在32位的机器上,地址是32个0或者1组成二进制序列,那地址就得用4个字节的空间来存储,所以一个指针变量的大小就应该是4个字节。
  • 那如果在64位机器上,如果有64个地址线,那一个指针变量的大小是8个字节,才能存放一个地址。

总结:

  • 指针变量是用来存放地址的,地址是唯一标示一个内存单元的。
  • 指针的大小在32位平台是4个字节,在64位平台是8个字节。

2. 指针和指针类型

这里我们在讨论一下:指针的类型
我们都知道,变量有不同的类型,整形,浮点型等。那指针有没有类型呢?
准确的说:有的。

当有这样的代码:

int num = 10;
p = &num;

要将&num(num的地址)保存到p中,我们知道p就是一个指针变量,那它的类型是怎样的呢?
我们给指针变量相应的类型。

char  *pc = NULL;
int  *pi = NULL;
short *ps = NULL;
long  *pl = NULL;
float *pf = NULL;
double *pd = NULL;

这里可以看到,指针的定义方式是: type + *
其实:
char* 类型的指针是为了存放 char 类型变量的地址。
short* 类型的指针是为了存放 short 类型变量的地址。
int* 类型的指针是为了存放 int 类型变量的地址。

那指针类型的意义是什么?

2.1 指针+-整数

#include <stdio.h>
//演示实例
int main()
{int n = 10;char *pc = (char*)&n;int *pi = &n;printf("%p\n", &n);printf("%p\n", pc);printf("%p\n", pc+1);printf("%p\n", pi);printf("%p\n", pi+1);return  0;
}

总结:指针的类型决定了指针向前或者向后走一步有多大(距离)。

2.2 指针的解引用

//演示实例
#include <stdio.h>int main()
{int n = 0x11223344;char *pc = (char *)&n;int *pi = &n;*pc = 0;  //重点在调试的过程中观察内存的变化。*pi = 0;  //重点在调试的过程中观察内存的变化。return 0;
}

总结:
指针的类型决定了,对指针解引用的时候有多大的权限(能操作几个字节)。
比如: char* 的指针解引用就只能访问一个字节,而 int* 的指针的解引用就能访问四个字节。

3. 野指针


概念: 野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

3.1 野指针成因

1. 指针未初始化

#include <stdio.h>
int main()
{int *p;//局部变量指针未初始化,默认为随机值*p = 20;return 0;
}

2. 指针越界访问

#include <stdio.h>
int main()
{int arr[10] = {0};int *p = arr;int i = 0;for(i=0; i<=11; i++){//当指针指向的范围超出数组arr的范围时,p就是野指针*(p++) = i;}return 0;
}

3. 指针指向的空间释放
    这里放在动态内存开辟的时候讲解,这里可以简单提示一下。

3.2 如何规避野指针

  1. 指针初始化
  2. 小心指针越界
  3. 指针指向空间释放,及时置NULL
  4.  避免返回局部变量的地址
  5. 指针使用之前检查有效性
#include <stdio.h>
int main()
{int *p = NULL;//....int a = 10;p = &a;if(p != NULL){*p = 20;}return 0;
}

4. 指针运算

  • 指针+- 整数
  • 指针-指针
  • 指针的关系运算

4.1 指针+-整数

#define N_VALUES 5
float values[N_VALUES];
float *vp;
//指针+-整数;指针的关系运算
for (vp = &values[0]; vp < &values[N_VALUES];)
{*vp++ = 0;
}

4.2 指针-指针

for(vp = &values[N_VALUES]; vp > &values[0];)
{*--vp = 0;
}

4.3 指针的关系运算

for(vp = &values[N_VALUES]; vp > &values[0];)
{*--vp = 0;
}

代码简化, 这将代码修改如下:

for(vp = &values[N_VALUES-1]; vp >= &values[0];vp--)
{*vp = 0;
}

实际在绝大部分的编译器上是可以顺利完成任务的,然而我们还是应该避免这样写,因为标准并不保证它可行。

标准规定:

允许指向数组元素的指针与指向数组最后一个元素后面的那个内存位置的指针比较,但是不允许与指向第一个元素之前的那个内存位置的指针进行比较。

5. 指针和数组


我们看一个例子:

#include <stdio.h>
int main()
{int arr[10] = {1,2,3,4,5,6,7,8,9,0};printf("%p\n", arr);printf("%p\n", &arr[0]);return 0;
}

运行结果:

可见数组名和数组首元素的地址是一样的。
结论:数组名表示的是数组首元素的地址。(2种情况除外,数组章节讲解了)
那么这样写代码是可行的:

int arr[10] = {1,2,3,4,5,6,7,8,9,0};
int *p = arr;//p存放的是数组首元素的地址

既然可以把数组名当成地址存放到一个指针中,我们使用指针来访问一个就成为可能。
例如:

#include <stdio.h>
int main()
{int arr[] = {1,2,3,4,5,6,7,8,9,0};int *p = arr; //指针存放数组首元素的地址int sz = sizeof(arr)/sizeof(arr[0]);for(i=0; i<sz; i++){printf("&arr[%d] = %p  <====> p+%d = %p\n", i, &arr[i], i, p+i);}return 0;
}

所以 p+i 其实计算的是数组 arr 下标为i的地址。
那我们就可以直接通过指针来访问数组。
如下:

int main()
{int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };int *p = arr; //指针存放数组首元素的地址int sz = sizeof(arr) / sizeof(arr[0]);int i = 0;for (i = 0; i<sz; i++){printf("%d ", *(p + i));}return 0;
}

6. 二级指针


指针变量也是变量,是变量就有地址,那指针变量的地址存放在哪里?
这就是 二级指针

对于二级指针的运算有:

  • *ppa 通过对ppa中的地址进行解引用,这样找到的是 pa*ppa 其实访问的就是 pa .
int b = 20;
*ppa = &b;//等价于 pa = &b;
  • **ppa 先通过 *ppa 找到 pa ,然后对 pa 进行解引用操作: *pa ,那找到的是 a .
**ppa = 30;
//等价于*pa = 30;
//等价于a = 30;

7. 指针数组

指针数组是指针还是数组?
答案:是数组。是存放指针的数组。
数组我们已经知道整形数组,字符数组。

int arr1[5];
char arr2[6];

那指针数组是怎样的?

int* arr3[5];//是什么?

arr3是一个数组,有五个元素,每个元素是一个整形指针。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225217.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Xcode 编译速度慢是什么原因?如何提高编译速度?

作为一个开发者&#xff0c;我们都希望能够高效地开发应用程序&#xff0c;而编译速度是影响开发效率的重要因素之一。然而&#xff0c;有时候我们会发现在使用 Xcode 进行开发时&#xff0c;译速度非常慢&#xff0c;这给我们带来了不少困扰。那么&#xff0c;为什么 Xcode 的…

Mybatis之Mapper动态代理方式

目录 一、 Mapper动态代理 二.、Mapper动态代理规范 三、Mapper.xml映射文件 1.在src目录下创建mapper文件&#xff0c;在mapper文件下定义mapper接口 2、在StudentMapper接口中编写方法 3、Mapper.xml(映射文件) 四、测试 的Mapper动态代理开发规范 Mapper接口开发方法…

新版IDEA中Git的使用(三)

说明&#xff1a;前面介绍了在新版IDEA中Git的基本操作、分支操作&#xff0c;本文介绍一下在新版IDEA中&#xff0c;如何回滚代码&#xff1b; 分以下三个阶段来介绍&#xff1a; 未Commit的文件&#xff1b; 已经Commit&#xff0c;但未push的文件&#xff1b; 已经push的…

为什么深度学习神经网络可以学习任何东西

下图你所看到的&#xff0c;是著名的曼德尔布罗特集&#xff0c;我们可以见证这个集合呈现出的复杂形态&#xff1a; 要理解神经网络如何学习曼德尔布罗特集&#xff0c;我们首先需要从最基础的数学概念讲起&#xff1a;什么是函数&#xff1f;函数本质上是一个将输入转化为输出…

uniapp APP应用程序iOS没有上架到苹果应用商店如何整包更新?

随着移动互联网的快速发展&#xff0c;uni-app 作为一种跨平台开发框架&#xff0c;受到了广泛欢迎。然而&#xff0c;有时候开发者可能会遇到一个问题&#xff1a;如何为已经发布到苹果应用商店的 uni-app APP 进行整包更新&#xff1f;尤其是当应用还没有上架到苹果应用商店时…

网络通信协议

WebSocket通信 WebSocket是一种基于TCP的网络通信协议&#xff0c;提供了浏览器和服务器之间的全双工通信&#xff08;full-duplex&#xff09;能力。在WebSocket API中&#xff0c;浏览器和服务器只需要完成一次握手&#xff0c;两者之间就直接可以创建持久性的连接&#xff…

UDP信号多个电脑的信息传输测试、配置指南

最近要做一个东西&#xff0c;关于一个软件上得到的信号&#xff0c;如何通过连接的局域网&#xff0c;将数据传输出去。我没做过相关的东西&#xff0c;但是我想应该和软件连接数据库的过程大致是差不多的&#xff0c;就一个ip和一个端口号啥的。 一.问题思路 多个设备同时连…

万界星空科技生产管理MES系统中的工时管理

工时管理的重大意义 1.提高生产效率 通过工时管理&#xff0c;企业可以更加精确地掌握研发人员的工时情况&#xff0c;及时调整项目进度和人力安排&#xff0c;提高生产效率。 2.降低人力成本 通过工时管理&#xff0c;企业可以更加精确地核算研发人员的工时费用&#xff0c…

【面试】Java中的多种设计模式(十种主要设计模式)

Java中的多种设计模式&#xff08;十种主要设计模式&#xff09; 文章概述 设计模式是一套被反复使用、多数人知晓的、经过分类的、代码设计经验的总结。它是软件工程中常见问题的解决方案的一种描述或模板。设计模式可以提供一种通用的、可重用的解决方案&#xff0c;帮助开发…

你好!Apache Seata

北京时间 2023 年 10 月 29 日&#xff0c;分布式事务开源项目 Seata 正式通过 Apache 基金会的投票决议&#xff0c;以全票通过的优秀表现正式成为 Apache 孵化器项目&#xff01; 根据 Apache 基金会邮件列表显示&#xff0c;在包含 13 个约束性投票 (binding votes) 和 6 个…

生存分析序章2——生存分析之Python篇:lifelines库入门

目录 写在开头1. 介绍 lifelines 库1.1 lifelines库简介1.2 安装与环境配置 2. 数据准备2.1 数据格式与结构2.2 处理缺失数据2.3 对异常值的处理 3. Kaplan-Meier 曲线3.1 使用 lifelines 绘制生存曲线3.2 曲线解读3.3 额外补充 4. Cox 比例风险模型4.1 lifelines 中的 Cox 模型…

使用python netmiko模块批量配置Cisco、华为、H3C路由器交换机(支持 telnet 和 ssh 方式)

0. 当前环境 外网电脑Python版本&#xff1a;3.8.5&#xff08;安装后不要删除安装包&#xff0c;以后卸载的时候用这个&#xff09;外网电脑安装netmiko第三方库&#xff1a;cmd中输入pip install netmiko内网电脑环境&#xff1a;无法搭建python环境&#xff0c;需外网电脑完…

Yolov5水果分类识别+pyqt交互式界面

Yolov5 Fruits Detector Yolov5 是一种先进的目标检测算法&#xff0c;可以应用于水果分类识别任务。结合 PyQT 框架&#xff0c;可以创建一个交互式界面&#xff0c;使用户能够方便地上传图片并获取水果分类结果。以下将详细阐述 Yolov5 水果分类识别和 PyQT 交互式界面的实现…

C/C++常见面试题(四)

C/C面试题集合四 目录 1、什么是C中的类&#xff1f;如何定义和实例化一个类&#xff1f; 2、请解释C中的继承和多态性。 3、什么是虚函数&#xff1f;为什么在基类中使用虚函数&#xff1f; 4、解释封装、继承和多态的概念&#xff0c;并提供相应的代码示例 5、如何处理内…

【Azure 架构师学习笔记】- Power Platform(1) - 简介

本文属于【Azure 架构师学习笔记】系列。 本文属于【Power Platform】系列。 Power Platform 它是一个SaaS平台&#xff0c;支持和延伸M365&#xff0c; Dynamics 365和Azure甚至其他第三方服务。主要提供低代码&#xff0c;自动化&#xff0c;数据驱动和定制化业务逻辑的服务…

【开源】基于Vue+SpringBoot的新能源电池回收系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户档案模块2.2 电池品类模块2.3 回收机构模块2.4 电池订单模块2.5 客服咨询模块 三、系统设计3.1 用例设计3.2 业务流程设计3.3 E-R 图设计 四、系统展示五、核心代码5.1 增改电池类型5.2 查询电池品类5.3 查询电池回…

65内网安全-域环境工作组局域网探针

这篇分为三个部分&#xff0c;基本认知&#xff0c;信息收集&#xff0c;后续探针&#xff0c; 基本认知 分为&#xff0c;名词&#xff0c;域&#xff0c;认知&#xff1b; 完整架构图 名词 dwz称之为军事区&#xff0c;两个防火墙之间的区域称之为dwz&#xff0c;但安全性…

STM32逆变器方案

输入电压&#xff1a; 额定输入电压&#xff1a;DC110V 输入电压范围&#xff1a;DC77-137.5V 额定输出参数 电压&#xff1a;200V5%&#xff08;200VAC~240VAC 可调&#xff09; 频率&#xff1a; 42Hz0.5Hz&#xff08;35-50 可调&#xff09; 额定输出容量&#xff1a;1…

mvtec3d

以bagel为例&#xff0c;其中有calibration、 bagel # 百吉圈(硬面包)calibrationcamera_parameters.jsontestcombinedgt # 缺陷部位的分割剪影pngrgb # 原图pngxyz # tiffcontamination # 污染物同上crack同上good同上 hole同上 traingoodrgbxyzvalidationgood同traincla…

【Gitlab】CICD流水线自动化部署教程

第一步&#xff0c;准备 GitLab 仓库 这个不用多说&#xff0c;得先保证你的项目已经托管在一个 GitLab 仓库中。 第二步&#xff0c;定义 .gitlab-ci.yml 文件 在你的项目根目录中创建一个 .gitlab-ci.yml 文件。这个文件将定义所有 CI/CD 的工作流程&#xff0c;包括构建、测…