为什么深度学习神经网络可以学习任何东西

下图你所看到的,是著名的曼德尔布罗特集,我们可以见证这个集合呈现出的复杂形态:

        要理解神经网络如何学习曼德尔布罗特集,我们首先需要从最基础的数学概念讲起:什么是函数?函数本质上是一个将输入转化为输出的系统,即从数字到数字的映射。在这里,您输入一个x值,系统就会输出一个y值。我们可以在图表上绘制所有x和y值,形成一条连续的线。重要的是,只要知道了这个函数,就可以针对任意输入x计算出对应的输出y。

         但如果我们不知道具体的函数形式,仅仅知道某些x和y值,我们是否能对这个未知函数进行反向推理?如果能构造出这样一个函数,我们就可以用它来估算出不在原始数据集中的x值所对应的y值。即便我们的数据包含一些噪声或随机性,我们仍然能够捕捉到数据的整体模式,从而生成接近真实但不完美的y值。我们需要的,就是一个能够近似真实函数的方法。更具体地说,这正是神经网络所做的。

        在探讨神经网络如何学习的过程中,我们首先遇到了一个基本问题:如果我们不完全知道一个函数的形式,只知道它的部分输入和输出值,我们能否对这个函数进行逆向工程?如果能够构造出这样一个函数,那么我们就可以利用它来估算那些不在原始数据集中的输入值所对应的输出值。即便我们手头的数据存在一些随机噪声,我们依然能够捕捉到其中的整体模式,并生成接近真实的输出值,虽然可能不完美。我们所需的,正是一种能近似真实函数的方法,而这正是神经网络的核心功能。

        神经网络,从本质上讲,就是一个函数逼近器。它由一系列相互连接的神经元组成,每个神经元都可以接收来自前一层的输入,并产生输出,再传递给下一层。每个神经元的输出不仅仅是输入的简单传递,它是输入经过权重调整、加总并通过激活函数处理后的结果。这些权重和偏差是神经网络学习的关键,它们决定了网络如何响应不同的输入。

        通过对这些权重和偏差的不断调整,神经网络能够逐渐学习并逼近复杂的函数。这个过程中,网络不断地尝试、出错、调整,最终找到一种方式,使得它的输出尽可能地接近于真实的函数值。这就是神经网络的魔力所在——它能够学习并模拟出极其复杂的数据模式和函数关系。

        在深入了解神经网络如何逼近复杂函数之前,我们首先要认识到其核心——非线性激活函数,如ReLU。这种激活函数的引入,极大地增强了网络处理复杂任务的能力。神经元通过加权输入和偏置调整,生成输出并传递给下一层,这一过程是网络学习的基础。随着学习的进行,网络不断调整其权重和偏置,逐步形成能够区分不同数据点的决策边界。这不仅显示了网络的强大适应性,也体现了它在处理多样化数据集时的多功能性.

        在神经网络的学习旅程中,非线性激活函数,发挥着至关重要的作用。这些函数为网络提供了处理复杂问题的必要工具,使得原本只能通过线性组合处理的简单任务得以跨越到处理更高级别的复杂模式。网络通过增加神经元数量,逐步构建能够捕捉复杂数据集的能力,从而有效地逼近所需的目标函数。这一过程不仅揭示了神经网络处理复杂性的能力,而且展现了其学习和逼近目标函数的独特方式。

        在神经网络的学习过程中,反向传播算法通过逐步调整网络参数来改进函数的逼近效果。尽管神经网络被证明具有普遍的函数逼近能力,能够以任意精度逼近各类函数,但实际应用中仍然面临一些限制。这些限制包括数据量的充足性、网络规模的可行性,以及对已知函数结构的理解程度。尽管如此,神经网络在处理一些对计算机而言极具挑战性的任务上表现出色,特别是在需要直觉和模糊逻辑的领域,如计算机视觉和自然语言处理,神经网络已经彻底改变了这些领域的面貌。

        一种简单而有力的思考世界的方式,通过结合简单的计算,我们可以让计算机构造任何我们想要的功能,神经网络几乎可以学习任何东西。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225211.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp APP应用程序iOS没有上架到苹果应用商店如何整包更新?

随着移动互联网的快速发展,uni-app 作为一种跨平台开发框架,受到了广泛欢迎。然而,有时候开发者可能会遇到一个问题:如何为已经发布到苹果应用商店的 uni-app APP 进行整包更新?尤其是当应用还没有上架到苹果应用商店时…

网络通信协议

WebSocket通信 WebSocket是一种基于TCP的网络通信协议,提供了浏览器和服务器之间的全双工通信(full-duplex)能力。在WebSocket API中,浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久性的连接&#xff…

UDP信号多个电脑的信息传输测试、配置指南

最近要做一个东西,关于一个软件上得到的信号,如何通过连接的局域网,将数据传输出去。我没做过相关的东西,但是我想应该和软件连接数据库的过程大致是差不多的,就一个ip和一个端口号啥的。 一.问题思路 多个设备同时连…

万界星空科技生产管理MES系统中的工时管理

工时管理的重大意义 1.提高生产效率 通过工时管理,企业可以更加精确地掌握研发人员的工时情况,及时调整项目进度和人力安排,提高生产效率。 2.降低人力成本 通过工时管理,企业可以更加精确地核算研发人员的工时费用&#xff0c…

【面试】Java中的多种设计模式(十种主要设计模式)

Java中的多种设计模式(十种主要设计模式) 文章概述 设计模式是一套被反复使用、多数人知晓的、经过分类的、代码设计经验的总结。它是软件工程中常见问题的解决方案的一种描述或模板。设计模式可以提供一种通用的、可重用的解决方案,帮助开发…

你好!Apache Seata

北京时间 2023 年 10 月 29 日,分布式事务开源项目 Seata 正式通过 Apache 基金会的投票决议,以全票通过的优秀表现正式成为 Apache 孵化器项目! 根据 Apache 基金会邮件列表显示,在包含 13 个约束性投票 (binding votes) 和 6 个…

生存分析序章2——生存分析之Python篇:lifelines库入门

目录 写在开头1. 介绍 lifelines 库1.1 lifelines库简介1.2 安装与环境配置 2. 数据准备2.1 数据格式与结构2.2 处理缺失数据2.3 对异常值的处理 3. Kaplan-Meier 曲线3.1 使用 lifelines 绘制生存曲线3.2 曲线解读3.3 额外补充 4. Cox 比例风险模型4.1 lifelines 中的 Cox 模型…

使用python netmiko模块批量配置Cisco、华为、H3C路由器交换机(支持 telnet 和 ssh 方式)

0. 当前环境 外网电脑Python版本:3.8.5(安装后不要删除安装包,以后卸载的时候用这个)外网电脑安装netmiko第三方库:cmd中输入pip install netmiko内网电脑环境:无法搭建python环境,需外网电脑完…

Yolov5水果分类识别+pyqt交互式界面

Yolov5 Fruits Detector Yolov5 是一种先进的目标检测算法,可以应用于水果分类识别任务。结合 PyQT 框架,可以创建一个交互式界面,使用户能够方便地上传图片并获取水果分类结果。以下将详细阐述 Yolov5 水果分类识别和 PyQT 交互式界面的实现…

C/C++常见面试题(四)

C/C面试题集合四 目录 1、什么是C中的类?如何定义和实例化一个类? 2、请解释C中的继承和多态性。 3、什么是虚函数?为什么在基类中使用虚函数? 4、解释封装、继承和多态的概念,并提供相应的代码示例 5、如何处理内…

【Azure 架构师学习笔记】- Power Platform(1) - 简介

本文属于【Azure 架构师学习笔记】系列。 本文属于【Power Platform】系列。 Power Platform 它是一个SaaS平台,支持和延伸M365, Dynamics 365和Azure甚至其他第三方服务。主要提供低代码,自动化,数据驱动和定制化业务逻辑的服务…

【开源】基于Vue+SpringBoot的新能源电池回收系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户档案模块2.2 电池品类模块2.3 回收机构模块2.4 电池订单模块2.5 客服咨询模块 三、系统设计3.1 用例设计3.2 业务流程设计3.3 E-R 图设计 四、系统展示五、核心代码5.1 增改电池类型5.2 查询电池品类5.3 查询电池回…

65内网安全-域环境工作组局域网探针

这篇分为三个部分,基本认知,信息收集,后续探针, 基本认知 分为,名词,域,认知; 完整架构图 名词 dwz称之为军事区,两个防火墙之间的区域称之为dwz,但安全性…

STM32逆变器方案

输入电压: 额定输入电压:DC110V 输入电压范围:DC77-137.5V 额定输出参数 电压:200V5%(200VAC~240VAC 可调) 频率: 42Hz0.5Hz(35-50 可调) 额定输出容量:1…

mvtec3d

以bagel为例,其中有calibration、 bagel # 百吉圈(硬面包)calibrationcamera_parameters.jsontestcombinedgt # 缺陷部位的分割剪影pngrgb # 原图pngxyz # tiffcontamination # 污染物同上crack同上good同上 hole同上 traingoodrgbxyzvalidationgood同traincla…

【Gitlab】CICD流水线自动化部署教程

第一步,准备 GitLab 仓库 这个不用多说,得先保证你的项目已经托管在一个 GitLab 仓库中。 第二步,定义 .gitlab-ci.yml 文件 在你的项目根目录中创建一个 .gitlab-ci.yml 文件。这个文件将定义所有 CI/CD 的工作流程,包括构建、测…

QT 输入框输入限制 正则表达式限制 整理

在使用 输入数值时,经常遇到限制其范围的需要,比如角太阳高度角范围为[-90,90],经度值范围[-180,180],方位角范围[0,360]。Qt提供了QIntValidator和QDoubleValidator可以限定数值输入范围,如使用QIntValidator限制整数…

数模学习day01-层次分析法模型

已经一个多月没有更新过文章了,为了保住那绩点的意思微弱的优势,直接开摆,开始复习专业课和公共课考试了,结果虽然有遗憾但是还是算不错,至少没有掉到3.xx嘿嘿。 然后现在就要开始学习数学建模和算法同步了。接下来的文…

GPU性能实时监测的实用工具

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

python作业题百度网盘,python作业答案怎么查

大家好,小编来为大家解答以下问题,python作业题百度网盘,python作业答案怎么查,今天让我们一起来看看吧! 1 以下代码的输出结果为: alist [1, 2, 3, 4] print(alist.reverse()) print(alist) A.[4, 3, 2, …