模式识别与机器学习-判别式分类器

模式识别与机器学习-判别式分类器

  • 生成式模型和判别式模型的区别
  • 线性判别函数
    • 多分类情况
      • 多分类情况1
      • 多分类情况2
      • 多分类情况3
    • 例题
  • 广义线性判别函数
    • 实例
  • 分段线性判别函数
  • Fisher线性判别
  • 感知机算法
    • 例:
    • 感知机多类别分类

谨以此博客作为学习期间的记录

生成式模型和判别式模型的区别

生成式模型关注如何生成整个数据的分布,而判别式模型则专注于学习如何根据给定输入预测输出标签或数值。在实践中多数判别式模型要优于生成式模型。

在这里插入图片描述

线性判别函数

对于一个两类问题来说,就是如何找到一条线(高维空间中是超平面)去将两类不同的样本分割开来。

若x是二维模式样本 x = [ x 1 x 2 ] T x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T x=[x1x2]T,其中 x 1 x_1 x1 x 2 x_2 x2是其坐标分量。
在这里插入图片描述
d ( x ) = w 1 x 1 + w 2 x 2 + w 3 = 0 d(x) = w_1x_1 + w_2x_2 + w_3 = 0 d(x)=w1x1+w2x2+w3=0
其中, x 1 x_1 x1 x 2 x_2 x2为坐标变量, w 1 w_1 w1 w 2 w_2 w2 w 3 w_3 w3为参数方程。当一个未知类别的模式代入 d ( x ) d(x) d(x) 时:

  • d ( x ) > 0 d(x) > 0 d(x)>0,则 样本属于 w 1 w_1 w1
  • d ( x ) < 0 d(x) < 0 d(x)<0,则 样本属于 w 2 w_2 w2
    此时, d ( x ) = 0 d(x) = 0 d(x)=0 称为判别函数。

n维线性判别函数的一般形式可以表示为: d ( x ) = w T x + w 0 = 0 d(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = 0 d(x)=wTx+w0=0
其中, x = [ x 1 , x 2 , … , x n ] T \mathbf{x} = [x_1, x_2, \dots, x_n]^T x=[x1,x2,,xn]T 表示 n 维模式样本, w = [ w 1 , w 2 , … , w n ] T \mathbf{w} = [w_1, w_2, \dots, w_n]^T w=[w1,w2,,wn]T 是权重向量, w 0 w_0 w0 是偏置项或阈值。通过这个判别函数,可以将样本空间分割成不同的类别区域。

多分类情况

在二分类问题中,只需要根据判别函数 d ( x ) d(x) d(x)的正负即可将样本划分为不同的类别。但是在多分类问题中,情况较为复杂,有以下三种处理方式:

多分类情况1

用线性判别函数将属于 ω i ω_i ωi类的模式与不属于 ω i ω_i ωi类的模式分开,用多个判别函数来完成分类任务,每一个判别函数 d i ( x ) d_i(x) di(x)只有一个任务,那就是这个样本是否属于 w i w_i wi类。
判别情况通常可以表示为:

  • d i ( x ) > 0 d_i(x) > 0 di(x)>0,则样本 x x x 被判定为属于 ω i ω_i ωi 类。
  • d i ( x ) < 0 d_i(x) < 0 di(x)<0,则样本 x x x 被判定为不属于 ω i ω_i ωi 类。
    在这里插入图片描述

多分类情况2

用多个判别函数来完成分类任务,判别函数 d i j ( x ) d_{ij}(x) dij(x)会判断样本x属于 w i w_i wi还是 w j w_j wj.
对一个三类情况, d 12 ( x ) = 0 对一个三类情况,d_{12}(x)=0 对一个三类情况,d12(x)=0仅能分开 ω 1 ω_1 ω1 ω 2 ω_2 ω2类,不能分开 ω 1 ω_1 ω1 ω 3 ω_3 ω3类。

要分开 M M M类模式,共需 M ( M − 1 ) 2 \frac{M(M-1)}{2} 2M(M1)个判别函数。

不确定区域:若所有 d i j ( x ) d_{ij}(x) dij(x),找不到 d i j ( x ) > 0 d_{ij}(x)>0 dij(x)>0的情况。
在这里插入图片描述

多分类情况3

在这种情况下,判别函数可以分解 d i j ( x ) = d i ( x ) − d j ( x ) d_{ij}(x) = d_i(x) - d_j(x) dij(x)=di(x)dj(x),其实 d i ( x ) d_i(x) di(x)可以理解为样本x距离类别 w i w_i wi的相似度,哪个 d i ( x ) d_i(x) di(x)大,x就离哪个类别近。
在这里插入图片描述
在这里插入图片描述

例题

Q1:
一个 10 类的模式识别问题中,有 3 类单独满足多类情况 1,其余的类别满足多类情况 2。问该模式识别问题所需判别函数的最少数目是多少?

A1:
将其余的类别满足多类情况 2的暂时先看为一类,这样的话需要4个判别函数就可以将 w 1 , w 2 , w 3 , { w 4 , w 5 , w 6 , w 7 , w 8 , w 9 , w 10 } w1,w2,w3,\{w4,w5,w6,w7,w8,w9,w10\} w1,w2,w3,{w4,w5,w6,w7,w8,w9,w10}划分开来,而要想将 w 4 , w 5 , w 6 , w 7 , w 8 , w 9 , w 10 w4,w5,w6,w7,w8,w9,w10 w4,w5,w6,w7,w8,w9,w10划分开,需要 7 ∗ ( 7 − 1 ) 2 = 21 \frac{7*(7-1)}{2} = 21 27(71)=21,因此一共需要21+4 = 25个判别函数。

Q2:
一个三类问题,其判别函数如下: d 1 ( x ) = − x 1 , d 2 ( x ) = x 1 + x 2 − 1 , d 3 ( x ) = x 1 − x 2 − 1 d_1(x) = -x_1,d_2(x) = x_1+x_2-1,d_3(x) = x_1-x_2-1 d1(x)=x1,d2(x)=x1+x21,d3(x)=x1x21

  1. 设这些函数是在多类情况 1 条件下确定的,绘出其判别界面和每一个模式类别的区域
    外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  2. 设为多类情况 2,并使: d 12 ( x ) = d 1 ( x ) , d 13 ( x ) = d 2 ( x ) , d 23 ( x ) = d 3 ( x ) d_{12}(x)= d_1(x), d_{13}(x)= d_2(x), d_{23}(x)= d_3(x) d12(x)=d1(x),d13(x)=d2(x),d23(x)=d3(x)。绘出其判别界面和多类情况 2 的区域
    外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  3. d 1 ( x ) , d 2 ( x ) 和 d 3 ( x ) d_1(x), d_2(x)和 d_3(x) d1(x),d2(x)d3(x)是在多类情况 3 的条件下确定的,绘出其判别界面和每类的区域。

如果属于类别 w 1 w_1 w1,那么 d 1 ( x ) d_1(x) d1(x)是三个判别函数中最大的,有 − x 1 > x 1 + x 2 − 1 − x 1 > x 1 − x 2 − 1 -x_1 > x_1+x_2 - 1\\ -x_1>x_1-x_2-1 x1>x1+x21x1>x1x21
化简之后有:
2 x 1 + x 2 − 1 < 0 2 x 1 − x 2 − 1 < 0 2x_1+x_2 - 1<0\\ 2x_1-x_2 - 1<0\\ 2x1+x21<02x1x21<0
同理:
如果属于类别 w 2 w_2 w2,那么 d 2 ( x ) d_2(x) d2(x)是三个判别函数中最大的,有 x 1 + x 2 − 1 > − x 1 x 1 + x 2 − 1 > x 1 − x 2 − 1 x_1+x_2 - 1>-x_1\\ x_1+x_2 - 1>x_1-x_2-1 x1+x21>x1x1+x21>x1x21
化简之后有:
2 x 1 + x 2 − 1 > 0 x 2 > 0 2x_1+x_2 - 1>0\\ x_2>0\\ 2x1+x21>0x2>0
同理:
如果属于类别 w 3 w_3 w3,那么 d 3 ( x ) d_3(x) d3(x)是三个判别函数中最大的,有 x 1 − x 2 − 1 > − x 1 x 1 − x 2 − 1 > x 1 + x 2 − 1 x_1-x_2 - 1>-x_1\\ x_1-x_2 - 1>x_1+x_2-1 x1x21>x1x1x21>x1+x21
化简之后有:
2 x 1 − x 2 − 1 > 0 x 2 < 0 2x_1-x_2 - 1>0\\ x_2<0\\ 2x1x21>0x2<0
在这里插入图片描述

广义线性判别函数

基本思想:可以在线性判别函数的基础上添加一些非线性特征,从而具有更好的表达能力。
若有一个训练用的模式集 { x } \{x\} {x},在模式空间 x x x 中线性不可分,但在模式空间 x ∗ x^* x 中线性可分。其中 x ∗ x^* x 的各个分量是 x x x 的单值实函数, x ∗ x^* x 的维数 k k k 高于 x x x 的维数 n n n,即若取
x ∗ = ( f 1 ( x ) , f 2 ( x ) , … , f k ( x ) ) , k > n x^* = (f_1(x), f_2(x), \dots, f_k(x)), \quad k > n x=(f1(x),f2(x),,fk(x)),k>n
则分类界面在 x ∗ x^* x 中是线性的,在 x x x 中是非线性的。此时只要将模式 x x x 进行非线性变换,使之变换后得到维数更高的模式 x ∗ x^* x,就可以用线性判别函数来进行分类。
此时广义线性判别函数可以表达为:
d ( x ) = w 1 f 1 ( x ) + w 2 f 2 ( x ) + . . . + w k f k ( x ) + w k + 1 d(x) = w_1f_1(x)+w_2f_2(x)+...+w_kf_k(x)+w_{k+1} d(x)=w1f1(x)+w2f2(x)+...+wkfk(x)+wk+1

实例

f i ( x ) f_i(x) fi(x) r r r次多项式, x x x是n维的情况。
在这里插入图片描述
Q3:
两类模式,每类包括 5 个 3 维不同的模式向量,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。)

系数分量的个数为: C n + r r C_{n+r}^{r} Cn+rr

如果线性可分: C 4 1 = 4 C_{4}^{1} = 4 C41=4

如果建立二次判别函数: C 3 + 2 2 = 10 C_{3+2}^{2} = 10 C3+22=10

分段线性判别函数

在有些非线性可分场景下,可以使用二次判别函数,另一种处理方式是使用分段线性函数去逼近这个二次函数。
在这里插入图片描述

Fisher线性判别

在低维空间里解析上或计算上行得通的方法,在高维空间里往往行不通。因此,降低维数有时就会成为处理实际问题的关键。
思想:根据实际情况找到一条最好的、最易于分类的投影线。将点投影到这条线上实现降维。
在这里插入图片描述
y n = W T x n y_n = W^Tx_n yn=WTxn这样就实现了从n维样本到一维的变换。关键在于如何确定W,从而使类内样本间隔尽可能小,类间样本间隔尽可能大。
在这里插入图片描述
最终求解得到的最优参数 w ∗ = S w − 1 ( m 1 − m 2 ) w*=S_w^{-1} (m_1-m_2) w=Sw1(m1m2)

感知机算法

感知器算法实质上是一种赏罚过程

  • 对正确分类的模式则“赏”,实际上是“不罚”,即权向量不变。
  • 对错误分类的模式则“罚”,使w(k)加上一个正比于 x k x_k xk的分量。
  • 当用全部模式样本训练过一轮以后,只要有一个模式是判别错误的,则需要进行下一轮迭代,即用全部模式样本再训练一次。
  • 如此不断反复直到全部模式样本进行训练都能得到正确的分类结果为止。

在这里插入图片描述

例:

  • 用感知器算法求下列模式分类的解向量 w w w :
    ω 1 : { ( 0 0 0 ) T , ( 1 0 0 ) T , ( 1 0 1 ) T , ( 1 1 0 ) T } ω 2 : { ( 0 0 1 ) T , ( 0 1 1 ) T , ( 0 1 0 ) T , ( 1 1 1 ) T } \begin{aligned} & \omega_1:\left\{\left(\begin{array}{lll} 0 & 0 & 0 \end{array}\right)^{\mathrm{T}},\left(\begin{array}{lll} 1 & 0 & 0 \end{array}\right)^{\mathrm{T}},\left(\begin{array}{lll} 1 & 0 & 1 \end{array}\right)^{\mathrm{T}},\left(\begin{array}{lll} 1 & 1 & 0 \end{array}\right)^{\mathrm{T}}\right\} \\ & \omega_2:\left\{\left(\begin{array}{lll} 0 & 0 & 1 \end{array}\right)^{\mathrm{T}},\left(\begin{array}{lll} 0 & 1 & 1 \end{array}\right)^{\mathrm{T}},\left(\begin{array}{lll} 0 & 1 & 0 \end{array}\right)^{\mathrm{T}},\left(\begin{array}{lll} 1 & 1 & 1 \end{array}\right)^{\mathrm{T}}\right\} \\ & \end{aligned} ω1:{(000)T,(100)T,(101)T,(110)T}ω2:{(001)T,(011)T,(010)T,(111)T}

先将样本点写为增广形式
w 1 : { ( 0 , 0 , 0 , 1 ) , ( 1 , 0 , 0 , 1 ) , ( 1 , 0 , 1 , 1 ) , ( 1 , 1 , 0 , 1 ) } w 2 : { ( 0 , 0 , 1 , 1 ) , ( 0 , 1 , 1 , 1 ) , ( 0 , 1 , 0 , 1 ) , ( 1 , 1 , 1 , 1 ) } w_1:\{(0,0,0,1),(1,0,0,1),(1,0,1,1),(1,1,0,1)\}\\ w_2:\{(0,0,1,1),(0,1,1,1),(0,1,0,1),(1,1,1,1)\} w1:{(0,0,0,1),(1,0,0,1),(1,0,1,1),(1,1,0,1)}w2:{(0,0,1,1),(0,1,1,1),(0,1,0,1),(1,1,1,1)}

将属于 w 2 w_2 w2的样本统一乘上-1,得到 w 2 : { ( 0 , 0 , − 1 , − 1 ) , ( 0 , − 1 , − 1 , − 1 ) , ( 0 , − 1 , 0 , − 1 ) , ( − 1 , − 1 − 1 , − 1 ) } w_2:\{(0,0,-1,-1),(0,-1,-1,-1),(0,-1,0,-1),(-1,-1-1,-1)\} w2:{(0,0,1,1),(0,1,1,1),(0,1,0,1),(1,11,1)}

初始化 w 0 = ( 0 , 0 , 0 , 0 ) , C = 1 w_0 = (0,0,0,0),C = 1 w0=(0,0,0,0),C=1

w 0 ∗ ( 0 , 0 , 0 , 1 ) = 0 , w 1 = w 0 + C ∗ ( 0 , 0 , 0 , 1 ) = ( 0 , 0 , 0 , 1 ) w 1 ∗ ( 1 , 0 , 0 , 1 ) = 1 , w 2 = w 1 = ( 0 , 0 , 0 , 1 ) w 2 ∗ ( 1 , 0 , 1 , 1 ) = 1 , w 3 = w 2 = ( 0 , 0 , 0 , 1 ) w 3 ∗ ( 1 , 1 , 0 , 1 ) = 1 , w 4 = w 3 = ( 0 , 0 , 0 , 1 ) w 4 ∗ ( 0 , 0 , − 1 , − 1 ) = − 1 , w 5 = w 4 + C ∗ ( 0 , 0 , − 1 , − 1 ) = ( 0 , 0 , − 1 , 0 ) w 5 ∗ ( 0 , − 1 , − 1 , − 1 ) = 1 , w 6 = w 5 = ( 0 , 0 , − 1 , 0 ) w 6 ∗ ( 0 , − 1 , 0 , − 1 ) = 0 , w 7 = w 6 + C ∗ ( 0 , − 1 , 0 , − 1 ) = ( 0 , − 1 , − 1 , − 1 ) w 7 ∗ ( − 1 , − 1 , − 1 , − 1 ) = 3 , w 8 = w 7 = ( 0 , − 1 , − 1 , − 1 ) . . . w 39 = ( 2. , − 2. , − 2. , 1 ) d = 2 x 1 − 2 x 2 − 2 x 3 + x 4 w_0 * (0,0,0,1) = 0,\qquad w_1 = w_0 + C*(0,0,0,1) = (0,0,0,1)\\ w_1*(1,0,0,1) = 1,\qquad w_2 = w_1 = (0,0,0,1)\\ w_2*(1,0,1,1) = 1,\qquad w_3 = w_2 = (0,0,0,1)\\ w_3*(1,1,0,1) = 1,\qquad w_4 = w_3 = (0,0,0,1)\\ w_4*(0,0,-1,-1) = -1,\qquad w_5 = w_4 + C*(0,0,-1,-1) = (0,0,-1,0)\\ w_5*(0,-1,-1,-1) = 1,\qquad w_6 = w_5 = (0,0,-1,0)\\ w_6*(0,-1,0,-1) = 0,\qquad w_7 = w_6+C*(0,-1,0,-1) = (0,-1,-1,-1)\\ w_7*(-1,-1,-1,-1) = 3,\qquad w_8 = w_7 = (0,-1,-1,-1)\\ ...\\ w_{39} = (2., -2., -2., 1)\\ d = 2x_1-2x_2-2x_3+x_4 w0(0,0,0,1)=0,w1=w0+C(0,0,0,1)=(0,0,0,1)w1(1,0,0,1)=1,w2=w1=(0,0,0,1)w2(1,0,1,1)=1,w3=w2=(0,0,0,1)w3(1,1,0,1)=1,w4=w3=(0,0,0,1)w4(0,0,1,1)=1,w5=w4+C(0,0,1,1)=(0,0,1,0)w5(0,1,1,1)=1,w6=w5=(0,0,1,0)w6(0,1,0,1)=0,w7=w6+C(0,1,0,1)=(0,1,1,1)w7(1,1,1,1)=3,w8=w7=(0,1,1,1)...w39=(2.,2.,2.,1)d=2x12x22x3+x4

  • 编写求解上述问题的感知器算法程序 (选做)
import numpy as np# 定义样本集
w1_samples = np.array([[0, 0, 0, 1], [1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 0, 1]])
w2_samples = np.array([[0, 0, -1, -1], [0, -1, -1, -1], [0, -1, 0, -1], [-1, -1, -1, -1]])# 合并样本并初始化增广形式
X = np.vstack((w1_samples, w2_samples))# 初始权重向量和参数设置
w = np.zeros(X.shape[1])  # 初始权重向量
C = 1  # 正则化参数
converged = False  # 收敛标志# 迭代更新权重向量
iteration = 0
while not converged:converged = Truefor i in range(X.shape[0]):if np.dot(w, X[i]) <= 0:  # 判断误分类点w = w + C * X[i]  # 更新权重向量converged = False  # 存在误分类点,未收敛print(f"Iteration {iteration + 1}: w = {w}")iteration += 1print(f"\nConverged at iteration {iteration}: Final w = {w}")

输出结果:

Iteration 1: w = [0. 0. 0. 1.]
Iteration 2: w = [0. 0. 0. 1.]
Iteration 3: w = [0. 0. 0. 1.]
Iteration 4: w = [0. 0. 0. 1.]
Iteration 5: w = [ 0.  0. -1.  0.]
Iteration 6: w = [ 0.  0. -1.  0.]
Iteration 7: w = [ 0. -1. -1. -1.]
Iteration 8: w = [ 0. -1. -1. -1.]
Iteration 9: w = [ 0. -1. -1.  0.]
Iteration 10: w = [ 1. -1. -1.  1.]
Iteration 11: w = [ 1. -1. -1.  1.]
Iteration 12: w = [ 1. -1. -1.  1.]
Iteration 13: w = [ 1. -1. -2.  0.]
Iteration 14: w = [ 1. -1. -2.  0.]
Iteration 15: w = [ 1. -1. -2.  0.]
Iteration 16: w = [ 1. -1. -2.  0.]
Iteration 17: w = [ 1. -1. -2.  1.]
Iteration 18: w = [ 1. -1. -2.  1.]
Iteration 19: w = [ 2. -1. -1.  2.]
Iteration 20: w = [ 2. -1. -1.  2.]
Iteration 21: w = [ 2. -1. -2.  1.]
Iteration 22: w = [ 2. -1. -2.  1.]
Iteration 23: w = [ 2. -2. -2.  0.]
Iteration 24: w = [ 2. -2. -2.  0.]
Iteration 25: w = [ 2. -2. -2.  1.]
Iteration 26: w = [ 2. -2. -2.  1.]
Iteration 27: w = [ 2. -2. -2.  1.]
Iteration 28: w = [ 2. -2. -2.  1.]
Iteration 29: w = [ 2. -2. -2.  1.]
Iteration 30: w = [ 2. -2. -2.  1.]
Iteration 31: w = [ 2. -2. -2.  1.]
Iteration 32: w = [ 2. -2. -2.  1.]
Iteration 33: w = [ 2. -2. -2.  1.]
Iteration 34: w = [ 2. -2. -2.  1.]
Iteration 35: w = [ 2. -2. -2.  1.]
Iteration 36: w = [ 2. -2. -2.  1.]
Iteration 37: w = [ 2. -2. -2.  1.]
Iteration 38: w = [ 2. -2. -2.  1.]
Iteration 39: w = [ 2. -2. -2.  1.]
Iteration 40: w = [ 2. -2. -2.  1.]Converged at iteration 40: Final w = [ 2. -2. -2.  1.]

感知机多类别分类

在这里插入图片描述
用多类感知器算法求下列模式的判别函数:
ω 1 : ( − 1 , − 1 ) T , ω 2 : ( 0 , 0 ) T , ω 3 : ( 1 , 1 ) T ω_1: (-1, -1)^T, ω_2: (0, 0)^T, ω_3: (1, 1)^T ω1:(1,1)Tω2:(0,0)Tω3:(1,1)T

将样本写为增广形式 ω 1 : ( − 1 , − 1 , 1 ) T , ω 2 : ( 0 , 0 , 1 ) T , ω 3 : ( 1 , 1 , 1 ) T ω_1: (-1, -1,1)^T, ω_2: (0, 0,1)^T, ω_3: (1, 1,1)^T ω1:(1,1,1)Tω2:(0,0,1)Tω3:(1,1,1)T

初始化 d 1 ( x ) = ( 0 , 0 , 0 ) , d 2 ( x ) = ( 0 , 0 , 0 ) , d 3 ( x ) = ( 0 , 0 , 0 ) d_1(x) = (0,0,0),d_2(x) = (0,0,0),d_3(x) = (0,0,0) d1(x)=(0,0,0),d2(x)=(0,0,0),d3(x)=(0,0,0)

d 1 ∗ w 1 = 0 , d 2 ∗ w 1 = 0 , d 3 ∗ w 1 = 0 , d 1 = d 1 + w 1 = ( − 1 , − 1 , 1 ) , d 2 = d 2 − w 1 = ( 1 , 1 , − 1 ) , d 3 = d 3 − w 1 = ( 1 , 1 , − 1 ) d 1 ∗ w 2 = 1 , d 2 ∗ w 2 = − 1 , d 3 ∗ w 3 = − 1 , d 1 = d 1 − w 2 = ( − 1 , − 1 , 0 ) , d 2 = d 2 + w 2 = ( 1 , 1 , 0 ) , d 3 = d 3 − w 2 = ( 1 , 1 , − 2 ) d 1 ∗ w 3 = − 2 , d 2 ∗ w 3 = 2 , d 3 ∗ w 3 = 0 , d 1 = ( − 1 , − 1 , 0 ) , d 2 = d 2 − w 3 = ( 0 , 0 , − 1 ) , d 3 = d 3 + w 3 = ( 2 , 2 , − 1 ) d 1 ∗ w 1 = 2 , d 2 ∗ w 1 = − 1 , d 3 ∗ w 1 = − 5 , d 1 = ( − 1 , − 1 , 0 ) , d 2 = ( 0 , 0 , − 1 ) , d 3 = ( 2 , 2 , − 1 ) d 1 ∗ w 2 = 0 , d 2 ∗ w 2 = − 1 , d 3 ∗ w 2 = − 1 , d 1 = d 1 − w 2 = ( − 1 , − 1 , − 1 ) , d 2 = d 2 + w 2 = ( 0 , 0 , 0 ) , d 3 = d 3 − w 2 = ( 2 , 2 , − 2 ) d 1 ∗ w 3 = − 3 , d 2 ∗ w 3 = 0 , d 3 ∗ w 3 = 2 , d 1 = ( − 1 , − 1 , − 1 ) , d 2 = ( 0 , 0 , 0 ) , d 3 = ( 2 , 2 , − 2 ) d 1 ∗ w 1 = 1 , d 2 ∗ w 1 = 0 , d 3 ∗ w 1 = − 6 , d 1 = ( − 1 , − 1 , − 1 ) , d 2 = ( 0 , 0 , 0 ) , d 3 = ( 2 , 2 , − 2 ) d 1 ∗ w 2 = − 1 , d 2 ∗ w 2 = 0 , d 3 ∗ w 2 = − 2 , d 1 = ( − 1 , − 1 , − 1 ) , d 2 = ( 0 , 0 , 0 ) , d 3 = ( 2 , 2 , − 2 ) d_1*w_1 = 0,\quad d_2*w_1 = 0,\quad d_3*w_1 = 0,\quad d_1 = d_1 + w_1 = (-1,-1,1),\quad d_2 = d_2 - w_1 = (1,1,-1),\quad d_3 = d_3 - w_1 = (1,1,-1)\\ d_1*w_2 = 1,\quad d_2*w_2 = -1,\quad d_3*w_3 = -1,\quad d_1 = d_1 - w_2 = (-1,-1,0),\quad d_2 = d_2 + w_2 = (1,1,0),\quad d_3 = d_3 - w_2 = (1,1,-2)\\ d_1*w_3 = -2,\quad d_2*w_3 = 2,\quad d_3*w_3 = 0,\quad d_1 = (-1,-1,0),\quad d_2 = d_2 - w_3 = (0,0,-1),\quad d_3 = d_3 + w_3 = (2,2,-1)\\ d_1*w_1 = 2,\quad d_2*w_1 = -1,\quad d_3*w_1 = -5,\quad d_1 = (-1,-1,0),\quad d_2 = (0,0,-1),\quad d_3 = (2,2,-1)\\ d_1*w_2 = 0,\quad d_2*w_2 = -1,\quad d_3*w_2 = -1,\quad d_1 =d_1 - w_2 = (-1,-1,-1),\quad d_2 = d_2 + w_2 = (0,0,0),\quad d_3 =d_3 -w_2 = (2,2,-2)\\ d_1*w_3 = -3,\quad d_2*w_3 = 0,\quad d_3*w_3 = 2,\quad d_1 = (-1,-1,-1),\quad d_2 = (0,0,0),\quad d_3 = (2,2,-2)\\ d_1*w_1= 1,\quad d_2*w_1= 0,\quad d_3*w_1 = -6,\quad d_1 = (-1,-1,-1),\quad d_2 = (0,0,0),\quad d_3 = (2,2,-2)\\ d_1*w_2= -1,\quad d_2*w_2= 0,\quad d_3*w_2 = -2,\quad d_1 = (-1,-1,-1),\quad d_2 = (0,0,0),\quad d_3 = (2,2,-2)\\ d1w1=0,d2w1=0,d3w1=0,d1=d1+w1=(1,1,1),d2=d2w1=(1,1,1),d3=d3w1=(1,1,1)d1w2=1,d2w2=1,d3w3=1,d1=d1w2=(1,1,0),d2=d2+w2=(1,1,0),d3=d3w2=(1,1,2)d1w3=2,d2w3=2,d3w3=0,d1=(1,1,0),d2=d2w3=(0,0,1),d3=d3+w3=(2,2,1)d1w1=2,d2w1=1,d3w1=5,d1=(1,1,0),d2=(0,0,1),d3=(2,2,1)d1w2=0,d2w2=1,d3w2=1,d1=d1w2=(1,1,1),d2=d2+w2=(0,0,0),d3=d3w2=(2,2,2)d1w3=3,d2w3=0,d3w3=2,d1=(1,1,1),d2=(0,0,0),d3=(2,2,2)d1w1=1,d2w1=0,d3w1=6,d1=(1,1,1),d2=(0,0,0),d3=(2,2,2)d1w2=1,d2w2=0,d3w2=2,d1=(1,1,1),d2=(0,0,0),d3=(2,2,2)
因此最终
d 1 = − x 1 − x 2 − 1 d 2 = 0 d 3 = 2 x 1 + 2 x 2 − 2 d_1 = -x_1 - x_2 - 1\\ d_2 = 0\\ d_3 = 2x_1+2x_2-2 d1=x1x21d2=0d3=2x1+2x22

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225437.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

D9741 PWM控制器电路,定时闩锁、短路保护电路,输出基准电压(2.5V) 采用SOP16封装

D9741是一块脉宽调制方三用于也收路像机和笔记本电的等设备上的直流转换器。在便携式的仪器设备上。 主要特点&#xff1a;● 高精度基准电路 ● 定时闩锁、短路保护电路 ● 低电压输入时误操作保护电路 ● 输出基准电…

智能优化算法应用:基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.骑手优化算法4.实验参数设定5.算法结果6.…

【WPF】使用Behavior以及ValidationRule实现表单校验

文章目录 使用ValidationRule实现检测用户输入EmptyValidationRule 非空校验TextBox设置非空校验TextBox设置非空校验并显示校验提示 结语 使用ValidationRule实现检测用户输入 EmptyValidationRule是TextBox内容是否为空校验&#xff0c;TextBox的Binding属性设置ValidationRu…

使用 Elasticsearch 检测抄袭 (二)

我在在之前的文章 “使用 Elasticsearch 检测抄袭 &#xff08;一&#xff09;” 介绍了如何检文章抄袭。这个在许多的实际使用中非常有意义。我在 CSDN 上的文章也经常被人引用或者抄袭。有的人甚至也不用指明出处。这对文章的作者来说是很不公平的。文章介绍的内容针对很多的…

解决Pycharm pip安装模块太慢问题,pycharm2022没有manage repositories配置镜像源

解决方案 方法清华阿里云中国科技大学华中理工大学 或者直接-i 加镜像 方法 URL写下面任意一个 清华 https://pypi.tuna.tsinghua.edu.cn/simple阿里云 http://mirrors.aliyun.com/pypi/simple/中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/华中理工大学 http:/…

前端项目重构的深度思考和复盘

摘要&#xff1a; 项目重构是每一家稳定发展的互联企业的必经之路, 就像一个产品的诞生, 会经历产品试错和产品迭代 一样, 随着业务或新技术的不断发展, 已有架构已无法满足更多业务扩展的需求, 所以只有通过重构来让产品“进化”, 才能跟上飞速发展的时代浪潮. 技术因素 早期…

TVS 管选型与 ESD 防护设计

文章目录 ESD 防护设计 TVS管的基础特性 TVS管的选型方法 TVS管布局细节 参考文献 ESD 防护设计 静电防护设计是让电路板外接的各类金属按钮开关在接触到外界空气放电或接触放电时&#xff0c;在这种瞬间出现的大能量注入到电路板后&#xff0c;能够通过某种设计好的通道泄…

python(上半部分)

第一部分 1、input()语句默认结果是字符串 2、type()可以判断变量的类型 3、input()输出语句 &#xff08;默认为字符串类型&#xff09; 4、命名规则&#xff1a;中文、英文、数字、_&#xff0c;数字不可开头&#xff0c;大小写敏感。 5、 %s&#xff1a;将内容转换成…

vue3+ts 可视化大屏无限滚动table效果实现

注意&#xff1a;vue3版本需使用 vue3-seamless-scroll npm npm install vue3-seamless-scroll --save页面引入 TS import { Vue3SeamlessScroll } from "vue3-seamless-scroll";代码使用&#xff08;相关参数可参考&#xff1a;https://www.npmjs.com/package/vu…

Java整合APNS推送消息-IOS-APP(基于.p12推送证书)

推送整体流程 1.在开发者中心申请对应的证书&#xff08;我用的是.p12文件&#xff09; 2.苹果手机用户注册到APNS&#xff0c;APNS将注册的token返回给APP&#xff08;服务端接收使用&#xff09;。 3.后台服务连接APNS&#xff0c;获取连接对象 4.后台服务构建消息载体 5.后台…

html table+css实现可编辑表格

要实现可编辑的 HTML 表格&#xff0c;你可以使用 JavaScript 和 HTML5 的 contenteditable 属性。 <!DOCTYPE html> <html> <head><style>table {border-collapse: collapse;width: 100%;}th, td {border: 1px solid black;padding: 8px;text-align:…

LENOVO联想笔记本小新Pro 14 IRH8 2023款(83AL)电脑原装出厂Win11系统恢复预装OEM系统

链接&#xff1a;https://pan.baidu.com/s/1M1iSFahokiIHF3CppNpL4w?pwdzr8y 提取码&#xff1a;zr8y 联想原厂系统自带所有驱动、出厂主题壁纸、Office办公软件、联想电脑管家等自带的预装软件程序 所需要工具&#xff1a;16G或以上的U盘 文件格式&#xff1a;ISO 文件…

关于Zoom ZTP和AudioCodes Ltd桌面电话缺陷暴露,导致用户遭受窃听的动态情报

一、基本内容 近期SySS安全研究员发布分析报告显示&#xff0c;Zoom的零接触&#xff08;ZTP&#xff09;和AudioCodes Ltd桌面电话配置功能中发现高危漏洞&#xff0c;可以获得对设备的完全远程控制并不受限制的访问可以被武器化&#xff0c;以窃听房间或电话、通过设备并攻击…

使用poi将pptx文件转为图片详解

目录 项目需求 后端接口实现 1、引入poi依赖 2、代码编写 1、controller 2、service层 测试出现的bug 小结 项目需求 前端需要上传pptx文件&#xff0c;后端保存为图片&#xff0c;并将图片地址保存数据库&#xff0c;最后大屏展示时显示之前上传的pptx的图片。需求看上…

Jmeter的接口自动化测试

在去年实施了一年的三端&#xff08;PC、无线M站、无线APP【Android、IOS】&#xff09;后&#xff0c;今年7月份开始&#xff0c;我们开始进行接口自动化的实施&#xff0c;目前已完成了整个框架的搭建以及接口的持续测试集成。今天做个简单的分享。 在开始自动化投入前&#…

[Angular] 笔记 10:服务与依赖注入

什么是 Services & Dependency Injection? chatgpt 回答&#xff1a; 在 Angular 中&#xff0c;Services 是用来提供特定功能或执行特定任务的可重用代码块。它们可以用于处理数据、执行 HTTP 请求、管理应用程序状态等。Dependency Injection&#xff08;依赖注入&#…

安装Kubernetes1.23、kubesphere3.4、若依项目自动打包部署到K8S记录

1.安装kubernetes1.23详细教程 kubernetes(k8s)集群超级详细超全安装部署手册 - 知乎 2.安装rancher动态存储 kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-provisioner/master/deploy/local-path-storage.yaml3.安装kubesphere3.4 准备工作 您…

XUbuntu22.04之跨平台容器格式工具:MKVToolNix(二百零三)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

电路设计(7)——窗口比较器的multism仿真

1.功能设计 构建一个窗口比较器的电路&#xff0c;在输入电压大于3.5v&#xff0c;小于0.8v时&#xff0c;蜂鸣器报警&#xff0c;输入电压在0.8v到3.5v之间时&#xff0c;不报警。 整体电路如下&#xff1a; 2.设计思路 在输入端&#xff0c;采取电阻分压的方式&#xff0c;输…

如何学习自动化测试?(附教程+源码)

自动化测试介绍 自动化测试(Automated Testing)&#xff0c;是指把以人为驱动的测试行为转化为机器执行的过程。实际上自动化测试往往通过一些测试工具或框架&#xff0c;编写自动化测试用例&#xff0c;来模拟手工测试过程。比如说&#xff0c;在项目迭代过程中&#xff0c;持…