[PyTorch][chapter 8][李宏毅深度学习][DNN 训练技巧]

前言:

   

       DNN 是神经网络的里面基础核心模型之一.这里面结合DNN 介绍一下如何解决

深度学习里面过拟合,欠拟合问题


目录:

  1.      DNN 训练常见问题
  2.      过拟合处理
  3.     欠拟合处理
  4.     keras 项目


一  DNN 训练常见问题

  我们在深度学习网络训练的时候经常会遇到下面两类问题:

         1:  训练集上面很差 : 欠拟合

         2: 训练集上面很好, 测试集上面很差: 过拟合


二  过拟合解决

过拟合解决方案

主要有以下三个处理思路

1 Early Stopped

2 L1 L2 正规化

3 Dropout

4: 增加训练集上面的数据量

 2.1  Early Stopping

   方案

   这个数据集分为3部分: Training Data,validation data,Test Data
   1  将训练的数据分为Training Data 和validation data
   2  每个epoch结束后(或每N个epoch后):计算validation data 的 accuracy 
   3: 更新 最优 validation data accuracy 对应的网络参数
   3  随着epoch的增加,如果validation data 连续多次没有提升,则停止训练;
   4  将之前validation data 准确率最高时的权重作为网络的最终参数。

2.2  正规化

      分为L1,L2 正规化.

2.3 Dropout

原网络结构

            z^{l+1}=w^{l+1}a^l+b^{l+1}

            a^{l+1}=\sigma(z^{l+1})

训练:

            Dropout

            a^{l}: 上面每个输入值以p%的概率变为0     

           z^{l+1}=w^{l+1}a^l+b^{l+1}

            a^{l+1}=\sigma(z^{l+1})

测试: 

          权重系数

             w^{l}=w^l*(1-p)

            一般p 设置为0.5

           

4  增加数据集上面数据量

      作用  降低方差


三  欠拟合

欠拟合处理方案

主要有下面5个处理思路:

     1 超参数调节: 学习率 训练轮次,batch_size

     2 更换激活函数

     3 梯度更新算法优化

     4  网络模型优化

     5 损失函数 更换

3.1  超参数调参

         主要更换学习率,增加迭代轮数等

 

3.2 更换激活函数

      DNN 随着网络层数的增加会出现梯度弥散现象,可以通过把激活函数sigmod 更换为

ReLu 一定程度上面优化该方案。    

    更换激活函数 ReLu(导数为1,链式求导的时候连乘不会减少)

        增加,减少 网络层数(梯度弥散,梯度爆炸)

        

3.3 梯度更新优化算法

      方案1  SGD 随机梯度下降

         \theta=\theta-\eta \bigtriangledown J(\theta)

        当梯度为0,参数无法更新容易陷入到局部极小值点

        学习率太大: 不容易进入到极小值点,容易发生网络震荡

         学习率太小: 收敛速度慢

 方案2 Momentum: 当前的梯度 = 当前的梯度+历史梯度

           SGD 会发生震荡而迟迟不能接近极小值,所以对更新梯度引入Momentum概念,加速SGD,并抑制震荡(也就是在SGD基础上引入了一阶动量)

            初始化动量:

                           m_0 =0: 动量

     

                             m_{t}=\lambda m_{t-1}+(1-\lambda)\bigtriangledown J(\theta_t): 动量

                             \theta_t=\theta_t -\eta m_t

           整个思想: 有点跟马尔科夫链时序链相似,当前输出值不仅仅跟当前的

输入相关,也跟历史值相关。

            

方案3:Adagrad (Adaptive Gradient,自适应梯度)

             不同参数进行不同程度的更新 - 逐参数适应学习率方法

           方案:

          在Adagrad算法中,每个参数的学习率各不相同。计算某参数的学习率时需将该参数前面所有时间步的梯度平方求和,随着时间步的增加,学习率将减小.

      v_t=\sum_{\tau=0}^{t}g_{\tau }^2

       \theta_t=\theta_t-\frac{\eta }{\sqrt{v_t+\varepsilon }}g_t

      

v_t: 二阶动量,权重系数里面的每个系数单独计算

\epsilon =1e-7

g_t: 当前权重系数的梯度

Adgrad方法中,学习率一直在衰减,所以可以起到抑制震荡的作用,

对于频繁更新的参数,它们的二阶动量比较大,学习率小;

对于不怎么更新的参数,它们的二阶动量比较小,学习率就大。

但因为那个分母是单调递增的,会使得学习率单调递减至0,可能会使得训练过程提前结束,即便后续还有数据也无法学到必要的知识

    

方案4 RMSProp:

Root Mean Square Propagation,自适应学习率方法,由Geoff Hinton提出,是梯度下降优化算法的扩展。在AdaGrad的基础上,对二阶动量的计算进行了改进:即有历史梯度的信息,但是我又不想让信息一直膨胀,那么只要让历史信息一直衰减就好了。因此得到RMSProp的二阶动量计算公式:

如下图所示,截图来自:https://arxiv.org/pdf/1609.04747.pdf

方案4 Adam算法即自适应时刻估计方法(Adaptive Moment Estimation)

算法思想  moment+Adagrad

同时考虑了动量 和二阶动量

3.4  更换损失函数

      比如mse 更换成CRE

3.5 更换模型

         增加网络层次,参数例如

      或者

           RNN 用LSTM  

           CNN 里面的ResNet

             解决梯度弥散问题



四    keras 

          Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow、Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化 [1]。
Keras在代码结构上由面向对象方法编写,完全模块化并具有可扩展性,其运行机制和说明文档有将用户体验和使用难度纳入考虑,并试图简化复杂算法的实现难度 [1]。Keras支持现代人工智能领域的主流算法,包括前馈结构和递归结构的神经网络,也可以通过封装参与构建统计学习模型 [2]。在硬件和开发环境方面,Keras支持多操作系统下的多GPU并行计算,可以根据后台设置转化为Tensorflow、Microsoft-CNTK等系统下的组件 [3]。
Keras的主要开发者是谷歌工程师François Chollet,此外其GitHub项目页面包含6名主要维护者和超过800名直接贡献者 [4]。Keras在其正式版本公开后,除部分预编译模型外,按MIT许可证开放源代码 [1]

   keras 创建一个神经网络,训练,测试主要流程如下

model模型搭建
compile损失函数,loss, batch_size
fit训练
evaluate验证测试集
predict预测
model = Sequential()#输入层
model.add(Dense(input_dim=28*28,
units = 500,
activation='relu'))#1 隐藏层
model.add(Dense(units=500,
activation='relu'))#2 输出层
model.add(Dense(units=10,
activation='softmax'))model.compile(loss='categorical_crossentropy',
optimizer='adam'
metrics =['accuracy'])#3 pick the best function ,完成训练工作
model.fit(x_train, y_train, batch_size=100, epochs=20)#4 使用该模型
score = model.evaluate(x_test,y_test)
result = model.predict(x_test)

参考:

9-1: Tips for Training DNN_哔哩哔哩_bilibili

【优化算法】一文搞懂RMSProp优化算法 - 知乎

神经网络-优化器篇-从梯度下降到Adam方法 - 知乎

https://www.cnblogs.com/picassooo/p/12347927.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225448.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Visual Studio2022配置ReSharper C++ 常用设置

如需安装免费的可以在下面留言,看到即回复 文章目录 Visual Studio2022配置ReSharper C 常用设置配置Visual Studio2022,使其能够按回车进行补全配置ReSharper C 设置自动弹出配置ReSharper C 的快捷键ReSharper C 去掉注释拼写使用中文注释 如何关闭新版…

ansible 备忘清单(一)

笔者: 把以前的手写笔记电子化吧,顺便当作复习。 基础命令 命令 参数 备注 ansible --version 查看版本号 ansible-doc --help 查看帮助信息 -l |--list 查看所有模块 -s 查看模块摘要 Ansible servers -I |-…

test-03-java 单元测试框架 testNG 入门介绍 junit/junit5/testNG 详细对比

拓展阅读 test-01-java 单元测试框架 junit 入门介绍 test-02-java 单元测试框架 junit5 入门介绍 test-03-java 单元测试框架 testNG 入门介绍 junit/junit5/testNG 详细对比 test assert-01-Google Truth 断言 test 系统学习-03-TestNG Spock testng 入门使用教程 开源…

【Vue篇】基础篇—Vue指令,Vue生命周期

🎊专栏【JavaSE】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【如愿】 🎄欢迎并且感谢大家指出小吉的问题🥰 文章目录 🍔Vue概述🎄快速入门🌺Vue指令⭐v-…

Android studio 连接夜神模拟器

前言: 在夜神模拟器安装目录,直接打开powerShell,然后输入:nox_adb.exe connect 127.0.0.1:62001,命令无法执行出现以下错误: 按照上面的提示,键入:.\nox_adb.exe 依然无法执行 如…

layui表格中预览视频和图片

全代码 <!DOCTYPE html> <html><head><title>Layui&#xff1a;数据表格table中预览图片、视频</title><meta charset"utf-8"/><link rel"stylesheet" href"../dist/css/layui.css"><style>&l…

模式识别与机器学习-判别式分类器

模式识别与机器学习-判别式分类器 生成式模型和判别式模型的区别线性判别函数多分类情况多分类情况1多分类情况2多分类情况3 例题 广义线性判别函数实例 分段线性判别函数Fisher线性判别感知机算法例&#xff1a;感知机多类别分类 谨以此博客作为学习期间的记录 生成式模型和判…

D9741 PWM控制器电路,定时闩锁、短路保护电路,输出基准电压(2.5V) 采用SOP16封装

D9741是一块脉宽调制方三用于也收路像机和笔记本电的等设备上的直流转换器。在便携式的仪器设备上。 主要特点&#xff1a;● 高精度基准电路 ● 定时闩锁、短路保护电路 ● 低电压输入时误操作保护电路 ● 输出基准电…

智能优化算法应用:基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.骑手优化算法4.实验参数设定5.算法结果6.…

【WPF】使用Behavior以及ValidationRule实现表单校验

文章目录 使用ValidationRule实现检测用户输入EmptyValidationRule 非空校验TextBox设置非空校验TextBox设置非空校验并显示校验提示 结语 使用ValidationRule实现检测用户输入 EmptyValidationRule是TextBox内容是否为空校验&#xff0c;TextBox的Binding属性设置ValidationRu…

使用 Elasticsearch 检测抄袭 (二)

我在在之前的文章 “使用 Elasticsearch 检测抄袭 &#xff08;一&#xff09;” 介绍了如何检文章抄袭。这个在许多的实际使用中非常有意义。我在 CSDN 上的文章也经常被人引用或者抄袭。有的人甚至也不用指明出处。这对文章的作者来说是很不公平的。文章介绍的内容针对很多的…

解决Pycharm pip安装模块太慢问题,pycharm2022没有manage repositories配置镜像源

解决方案 方法清华阿里云中国科技大学华中理工大学 或者直接-i 加镜像 方法 URL写下面任意一个 清华 https://pypi.tuna.tsinghua.edu.cn/simple阿里云 http://mirrors.aliyun.com/pypi/simple/中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/华中理工大学 http:/…

前端项目重构的深度思考和复盘

摘要&#xff1a; 项目重构是每一家稳定发展的互联企业的必经之路, 就像一个产品的诞生, 会经历产品试错和产品迭代 一样, 随着业务或新技术的不断发展, 已有架构已无法满足更多业务扩展的需求, 所以只有通过重构来让产品“进化”, 才能跟上飞速发展的时代浪潮. 技术因素 早期…

TVS 管选型与 ESD 防护设计

文章目录 ESD 防护设计 TVS管的基础特性 TVS管的选型方法 TVS管布局细节 参考文献 ESD 防护设计 静电防护设计是让电路板外接的各类金属按钮开关在接触到外界空气放电或接触放电时&#xff0c;在这种瞬间出现的大能量注入到电路板后&#xff0c;能够通过某种设计好的通道泄…

python(上半部分)

第一部分 1、input()语句默认结果是字符串 2、type()可以判断变量的类型 3、input()输出语句 &#xff08;默认为字符串类型&#xff09; 4、命名规则&#xff1a;中文、英文、数字、_&#xff0c;数字不可开头&#xff0c;大小写敏感。 5、 %s&#xff1a;将内容转换成…

vue3+ts 可视化大屏无限滚动table效果实现

注意&#xff1a;vue3版本需使用 vue3-seamless-scroll npm npm install vue3-seamless-scroll --save页面引入 TS import { Vue3SeamlessScroll } from "vue3-seamless-scroll";代码使用&#xff08;相关参数可参考&#xff1a;https://www.npmjs.com/package/vu…

Java整合APNS推送消息-IOS-APP(基于.p12推送证书)

推送整体流程 1.在开发者中心申请对应的证书&#xff08;我用的是.p12文件&#xff09; 2.苹果手机用户注册到APNS&#xff0c;APNS将注册的token返回给APP&#xff08;服务端接收使用&#xff09;。 3.后台服务连接APNS&#xff0c;获取连接对象 4.后台服务构建消息载体 5.后台…

html table+css实现可编辑表格

要实现可编辑的 HTML 表格&#xff0c;你可以使用 JavaScript 和 HTML5 的 contenteditable 属性。 <!DOCTYPE html> <html> <head><style>table {border-collapse: collapse;width: 100%;}th, td {border: 1px solid black;padding: 8px;text-align:…

LENOVO联想笔记本小新Pro 14 IRH8 2023款(83AL)电脑原装出厂Win11系统恢复预装OEM系统

链接&#xff1a;https://pan.baidu.com/s/1M1iSFahokiIHF3CppNpL4w?pwdzr8y 提取码&#xff1a;zr8y 联想原厂系统自带所有驱动、出厂主题壁纸、Office办公软件、联想电脑管家等自带的预装软件程序 所需要工具&#xff1a;16G或以上的U盘 文件格式&#xff1a;ISO 文件…

关于Zoom ZTP和AudioCodes Ltd桌面电话缺陷暴露,导致用户遭受窃听的动态情报

一、基本内容 近期SySS安全研究员发布分析报告显示&#xff0c;Zoom的零接触&#xff08;ZTP&#xff09;和AudioCodes Ltd桌面电话配置功能中发现高危漏洞&#xff0c;可以获得对设备的完全远程控制并不受限制的访问可以被武器化&#xff0c;以窃听房间或电话、通过设备并攻击…