HBase 例行灾备方案:快照备份与还原演练

《大数据平台架构与原型实现:数据中台建设实战》博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描左侧二维码进入京东手机购书页面。

该方案是为某用户定制的 HBase 灾备方案,方案本身具有很好的适用性,可以复用于常规 HBase 灾备场景。用户对 HBase 的灾备工作非常重视,每周会对 HBase 进行一次全量备份,将快照上传至 S3 保存,同时,在消息队列和其他数据库中保存着两周以内的增量数据,当 HBase 宕机时,会先还原快照将数据库恢复至一周内某一时刻的全量状态,然后再从其他系统读取一周内的增量数据进行补录,直至数据追平。本文将重点讨论 HBase 基于快照的例行备份和灾后恢复操作,并给出详细的解释和操作脚本。更多快照导入导出操作的详细介绍可参考本文姊妹篇:《HBase 超大表迁移、备份、还原、同步演练手册:全量快照 + 实时同步(Snapshot + Replication)不停机迁移方案》

1. 方案架构


由于 HBase 的快照导入、导出是一个基于 Yarn 的 Map-Reduce 作业,而生产集群是一个专职的 HBase 集群,不宜为 Yarn 分配过多资源,所以,直接使用 HBase 的生产集群执行快照导入、导出作业并不是一个明智的选择,推荐的做法是:为快照导入和导出创建专用集群,这样做的好处是:
  • HBase 的生产集群将不再需要为 Yarn 分配资源,可以将资源集中投放给 HBase;
  • 用于快照导入、导出的专用集群可以将全部资源分配给 Yarn,同时在配置上针对 Map-Reduce 进行定向性能调优,以最快速度完成快照导入、导出工作;
  • 在超大数据集下,无论是快照导出、导入还是还原,都需要对 HBase 做多项特定配置,包含超时和文件清理周期的调整,这些都不是正常生产集群上应有的配置,该方案可以规避修改配置并重启集群的问题;
  • 导入、导出执行完毕后,可随即释放集群,无额外支出

以下是快照备份场景的架构示意图:

请添加图片描述

在这一场景下,我们通过专用的快照导出集群从生产集群中导出快照(读取的是生产集群的 HDFS),然后将数据写入到 S3 并保存至少1周时间,从效果上等同于生产集群将自己的快照直接上传至 S3,但却不需要为此特别修改配置。

以下是灾后还原场景的架构示意图:

请添加图片描述

在这一场景下,我们通过专用的快照导入集群读取 S3 中的快照文件,然后将数据写入到还原集群中(写入的是还原集群的 HDFS),从效果上等同于还原集群直接从 S3 上下载快照并还原,但却不需要为此特别修改配置。

2. 环境说明


本次模拟演练使用的环境是:HBase 1.4.9 (EMR版本:5.23.0),全场景涉及4个 HBase 集群,分别是:

  • 生产集群:m5.4xlarge (16 vCore,64 GB),3 个 Master Node + 20 个 Core Node
  • 快照导出专用集群:r5.2xlarge (8 vCore,64 GB),1 个 Master Node + 32 个 Core Node
  • 快照导入专用集群:r5.2xlarge (8 vCore,64 GB),1 个 Master Node + 32 个 Core Node
  • 恢复集群:m5.4xlarge (16 vCore,64 GB),3 个 Master Node + 20 个 Core Node

以下是4个集群的详细信息:

信息项生产集群快照导出专用集群快照导入专用集群恢复集群
HBase 版本1.4.91.4.91.4.91.4.9
EMR 版本5.23.05.23.05.23.05.23.0
实例机型m5.4xlarger5.2xlarger5.2xlargem5.4xlarge
主节点3113
Core节点20<= 323220
存储介质HDFSHDFSHDFSHDFS

3. 前置条件


进行实操演练前,需要您的环境中已经创建了:

  1. 一个生产集群
  2. 一张演练用的测试表

如果只是进行演练,您可以根据自身账号情况灵活配置 HBase 生产集群的规模,不必拘泥于上述建议配置;创建测试用表可以参考 《AWS EMR HBase 超大表迁移、备份、还原、同步演练手册:全量快照 + 实时同步(Snapshot + Replication)不停机迁移方案 》一文的第 5.5 - 5.7 节。

进行正式演练前,需要提醒注意以下事项:

  • 本演练的多数命令都需执行较长时间,因此,命令都使用了 nohup ... & 形式转为了后台运行,以防 Linux 终端 Session 超时导致命令意外终止;

  • 本演练的操作必须按顺序执行,不可在前一个命令转为后台运行后,立即执行下一条命令;

  • 演练过程中需要在各个集群和 AWS Console 上来回切换,为了提醒操作者,本文特意使用 [ 执行环境 ] :: ... 形式的标题强调本节操作的执行环境

4. 全局变量


为了让脚本更具可移植性,我们将所有环境相关的信息抽离出来,以变量形式统一声明和维护(请注意替换脚本中出现的 `
export TABLE_NAME="<your-table-name>"
export SNAPSHOT_NAME="${TABLE_NAME}-$(date +'%Y%m%d')"
export SNAPSHOTS_REPO="s3://<your-snapshot-repo-bucket>"
export SNAPSHOT_S3_LOCATION="${SNAPSHOTS_REPO}/${SNAPSHOT_NAME}/"
export WORKER_NODES=32
export SNAPSHOT_EXPORT_MAPPERS=2040
export INUSE_CLUSTER_NAMENODES="<your-in-use-cluster-namenode>"
export SNAPSHOT_EXPORT_CLUSTER_NAMENODES="<your-snapshot-export-cluster-namenode>"
export SNAPSHOT_IMPORT_CLUSTER_NAMENODES="<your-snapshot-import-cluster-namenode>"
export RESTORED_CLUSTER_NAMENODES="<your-restored-cluster-namenode-namenode>"

5. 备份快照 ( 例行灾备作业 )


快照备份工作每周执行一次,快照文件会导出到 S3 上存储。本演练文档会给出详细的步骤说明和操作脚本,在实际运维中,该部分操作应提升为脚本或工作流由调度引擎每周触发执行。

5.1. [ 生产集群 ] :: 创建快照


由于生产环境的 HBase 集群不能停机,所以我们在创建快照时,不可以 disable table,而是直接创建快照:

# create snapshot
sudo -u hbase hbase snapshot create -n $SNAPSHOT_NAME -t $TABLE_NAME
# sleep for a while, snapshot may be NOT available immediately.
sleep 120
# check if snapshot is available
sudo -u hbase hbase snapshot info -list-snapshots

通过这种方式创建出来的快照叫:Online Snapshot,如果事先 disable table,则创建出来的就叫 Offline Snapshot。

5.2. [ AWS 控制台 ] :: 创建快照导出专用集群


对于快照导入、导出集群的机型和配置,我们做了多轮测试,最终选定了 r5.2xlarge,因为导入导出作业是一个内存和网络IO密集型作业,网络IO的上限已由生产集群的机型和节点数量决定了,所以,我们从内存上找到了一些优化空间,最终选定了 r5.2xlarge 机型,并将 60 GB 内存分配给 Yarn,单一 worker 节点切分 16 个 Container,Map 任务数量是 Container 的 4 倍,这样的配置在多种配置组合中,性能最佳。以下是具体配置 (请注意替换配置文件中的 <your-aws-access-key-id><your-aws-secret-access-key>):

[{"Classification": "hdfs-site","Properties": {"dfs.replication": "1"}},{"Classification": "emrfs-site","Properties": {"fs.s3.maxRetries": "50","fs.s3.maxConnections": "500000"}},{"Classification": "core-site","Properties": {"fs.s3n.multipart.uploads.split.size": "1073741824","fs.s3.awsAccessKeyId": "<your-aws-access-key-id>","fs.s3.awsSecretAccessKey": "<your-aws-secret-access-key>"}},{"Classification": "yarn-site","Properties": {"yarn.nodemanager.resource.memory-mb": "61440","yarn.scheduler.maximum-allocation-mb": "61440","yarn.scheduler.minimum-allocation-mb": "1","yarn.nodemanager.vmem-pmem-ratio": "10"}},{"Classification": "mapred-site","Properties": {"mapred.job.jvm.num.tasks": "-1","mapreduce.map.memory.mb": "3840","mapreduce.map.java.opts": "-Xmx3072m","mapreduce.map.cpu.vcores": "2","mapreduce.reduce.memory.mb": "7680","mapreduce.reduce.java.opts": "-Xmx6144m","mapreduce.reduce.cpu.vcores": "4","yarn.app.mapreduce.am.resource.mb": "7680","yarn.app.mapreduce.am.resource.cpu-vcores": "4"}}
]

不同于生产集群,导入导出集群并不存储数据,所以无需增加磁盘存储,使用默认配置即可。此外,集群创建完毕后,须用 Primary Node 的 Private DNS 或 IP 为全局变量 INUSE_CLUSTER_NAMENODES赋值,并在 Master 节点上执行一次第 4 节的全局变量声明脚本。

5.3. [ 快照导出专用集群 ] :: 导出快照


在快照导出专用集群的主节点上,执行如下命令:

nohup sudo -u hbase hbase snapshot export \-snapshot $SNAPSHOT_NAME \-copy-from "hdfs://${INUSE_CLUSTER_NAMENODES}:8020/user/hbase/" \-copy-to ${SNAPSHOT_S3_LOCATION} \-mappers $SNAPSHOT_EXPORT_MAPPERS \-bandwidth $((2**31-1)) &> export-$SNAPSHOT_NAME.out &
tail -f /var/log/hbase/hbase.log

注意:

  • -mappers 参数的设定值 $SNAPSHOT_EXPORT_MAPPERS 是根据集群配置优化过的,如果不了解该配置项的细节,请勿随意修改,否则会影响性能
  • -bandwidth 参数用于限制带宽,默认值是 100,单位是 MBps,此处设定为 $((2**31-1)) ,是 Java 中的 Integer.MAX_VALUE,目的是不进行带宽限制,由于快照导出会对生成集群造成一定的压力,特别是会占用相当份额的网络带宽,所以是否需要限速可视实际情况进行调整,具体可参考第 7 节的详细说明。

5.4. [ 生产集群 ] :: 删除快照


快照导出后,须及时删除快照 !因为创建快照后,快照引用的 HFile 将不再被自动清理,随着时间推移,在经历了几轮 Compaction 后,HBase 的 archive 文件夹通常会有大幅增长,HDFS 会有被写满的危险。执行以下命令可删除快照:

sudo -u hbase hbase shell <<< "delete_snapshot '$SNAPSHOT_NAME'"

5.5. [ AWS 控制台 ] :: 终止快照导出专用集群


导出完成后,即可在控制台上终止快照导出专用集群。

6. 还原快照 ( 灾后恢复作业 )


快照还原仅发生在系统宕机后的恢复阶段,非例行作业,可以按本文档手动操作完成。

6.1. [ AWS 控制台 ] :: 创建恢复集群


恢复集群就是重建后的生产集群,其配置应完全参照原生产集群,但是,**要特别注意 hbase-site.xml 中的`hbase.master.cleaner.interval` ,这是还原集群的一个必配项(初始创建的生产集群通常不会配置该项),这个配置项的值应大于从启动恢复集群到完成全部快照导入和还原操作的总时间!**

此外,集群创建完毕后,须用 Primary Node 的 Private DNS 或 IP 为全局变量 RESTORED_CLUSTER_NAMENODES 赋值,并在 Master 节点上执行一次第 4 节的全局变量声明脚本。

6.2. [ AWS 控制台 ] :: 创建快照导入专用集群


快照还原专用集群的配置和操作与 5.2. 节:“创建快照导出专用集群” 完全一致,请参考此节。

6.3. [ 快照导入专用集群 ] :: 导入快照


在快照导入专用集群的主节点上,执行如下命令:
nohup sudo -u hbase hbase snapshot export \-snapshot $SNAPSHOT_NAME \-copy-from ${SNAPSHOT_S3_LOCATION} \-copy-to "hdfs://${INUSE_CLUSTER_NAMENODES}:8020/user/hbase/" \-mappers $SNAPSHOT_EXPORT_MAPPERS \-bandwidth $((2**31-1)) &> import-$SNAPSHOT_NAME.out &
tail -f /var/log/hbase/hbase.log

注意:

  • 这里是一个导入操作,但依旧使用的是 export 命令,导入和导出是一个相对概念,HBase 中没有 snapshot import 命令

  • -mappers 参数的设定值 $SNAPSHOT_EXPORT_MAPPERS 是根据集群配置优化过的,如果不了解该配置项的细节,请勿随意修改,否则会影响性能

  • -bandwidth 参数用于限制带宽,默认值是 100,单位是 MBps,此处设定为 $((2**31-1)) ,是 Java 中的 Integer.MAX_VALUE,目的是不进行带宽限制,还原阶段恢复集群尚未上线,可以全力接收导入的数据,因为无需限速。

6.4. [ 还原集群 ] :: 还原快照


快照导入完毕后,登录还原集群,检查快照是否已就绪:

sudo -u hbase hbase snapshot info -list-snapshots

确认快照已存在就可以执行快照还原了:

cat << EOF | nohup sudo -u hbase hbase shell &> restore-$SNAPSHOT_NAME.out &
restore_snapshot '$SNAPSHOT_NAME'
enable '$TABLE_NAME'
EOF
tail -f restore-$SNAPSHOT_NAME.out

6.5. [ 还原集群 ] :: 删除快照


快照还原后,同样应及时删除还原集群上的快照,原因与 4.4 节的解释一样。

sudo -u hbase hbase shell <<< "delete_snapshot '$SNAPSHOT_NAME'"

6.6. [ AWS 控制台 ] :: 终止快照导入专用集群


导入完成后,即可在控制台上终止快照导入专用集群。

7. 注意事项

7.1. 快照备份的带宽控制


在执行快照导出作业时,HBase 的生产集需要承担输出 HDFS 数据的任务,会占用较大份额的上行网络带宽,下图是执行 9 个批次(每个批次导出 10TB 数据)的导出作业时,源端集群(即本文档所指的生产集群)一个 Core 节点的负载情况。右下角的网络 IO 指标需要特别注意,因为 m5.4xlarge 的基准带宽是 4750Mbps,即:每秒最多可上传 593.75 MB 数据, 从上图可知:导出作业的上行带宽峰值已经逼近 600 MB。虽然导出作业会选择业务低估期执行,但如果认定此时占用的带宽已经影响到了线上生产,则需要缩减导出集群的规模或进行限速处理,但要注意的是:这就意味着导出时间会变长,相应地又会影响到 hbase.master.cleaner.interval 参数的设置。这是一个需要权衡的问题,应该根据生产环境的实际状况进行调整。

m5_4xlarge_20_nodes_1x1_source_node

7.2. 快照还原的带宽控制


在快照导入阶段,由于还原集群尚未接入生产,无其他负载,从尽量缩短故障恢复时间的角度出发,应以在最短时间内以最大吞吐率完成快照还原操作,所以,快照导入集群不应也不需要限速,推荐使用 32 节点的 r5.2xlarge 集群以最短时间完成导入作业。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225805.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人工智能 机器学习 深度学习:概念,关系,及区别说明

如果过去几年&#xff0c;您读过科技主题的文章&#xff0c;您可能会遇到一些新词汇&#xff0c;如人工智能&#xff08;Artificial Intelligence&#xff09;、机器学习&#xff08;Machine Learning&#xff09;和深度学习&#xff08;Deep Learning&#xff09;等。这三个词…

【Unity学习笔记】1.创建场景

创建场景 注1&#xff1a;samplescene&#xff08;示例场景&#xff09;、standard assets&#xff08;标准资产&#xff09;、favorites&#xff08;收藏夹&#xff09;、terrain&#xff08;地形&#xff09;。 注2&#xff1a;favorites用于存放各种资源&#xff1b;sample…

【C语言】数组

㊙️小明博客主页&#xff1a;➡️ 敲键盘的小明 ㊙️ ✅关注小明了解更多知识☝️ 文章目录 前言一、什么是数组&#xff1f;二、一维数组的创建和初始化2.1 一维数组的创建2.2 一维数组的初始化2.3 一维数组的使用3.3 一维数组的存储 三、二维数组的创建和初始化3.1 二维数组…

每日一题(LeetCode)----二叉树-- 二叉树的右视图

每日一题(LeetCode)----二叉树-- 二叉树的右视图 1.题目&#xff08;199. 二叉树的右视图&#xff09; 给定一个二叉树的 根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 示例 1: 输入: [1,2,3,nu…

Pandas有了平替Polars

Polars是一个Python数据处理库&#xff0c;旨在提供高性能、易用且功能丰富的数据操作和分析工具。它的设计灵感来自于Pandas&#xff0c;但在性能上更加出色。 Polars具有以下主要特点&#xff1a; 强大的数据操作功能&#xff1a;Polars提供了类似于Pandas的数据操作接口&am…

CentOS 5/6/7 基于开源项目制作openssh 9.6p1 rpm包—— 筑梦之路

背景介绍 开源项目地址&#xff1a;https://github.com/boypt/openssh-rpms.git 该项目主要支持了centos 5 、6、7版本&#xff0c;针对使用了比较老的操作系统进行openssh安全加固&#xff0c;还是不错的项目&#xff0c;使用简单、一件制作&#xff0c;欢迎大家去支持作者。…

Linux操作系统极速入门[常用指令](安装jdk,MySQL,nginx),以及在linux对项目进行部署。

linux概述&#xff1a; Linux是一套免费使用和自由传播的操作系统 我们为什么要学&#xff0c;Linux&#xff1f; 主流操作系统&#xff1a; linux系统版本&#xff1a; 内核版&#xff1a; 由linux核心团队开发&#xff0c;维护 免费&#xff0c;开源 负责控制硬件 发行版&…

电路设计(8)——计时器的multism仿真

1.功能设计 这是一个计时电路&#xff0c;在秒脉冲的驱动下&#xff0c;计时器开始累加&#xff0c;6个数码管分别显示计时的 时&#xff1a;分&#xff1a;秒。 仿真图如下所示&#xff1a; 左边的运放构成了振荡电路&#xff0c;可以产生脉冲波。这个脉冲波给计时电路提供基准…

postman进阶使用

前言 对于postman的基础其实很容易上手实现&#xff0c;也有很多教程。 对于小编我来说&#xff0c;也基本可以实现开发任务。 但是今年我们的高级测试&#xff0c;搞了一下postman&#xff0c;省去很多工作&#xff0c;让我感觉很有必要学一下 这篇文章是在 高级测试工程师ht…

数据探查系列:如何进行有意义的探索性数据分析(EDA)

如何进行有意义的探索性数据分析&#xff08;EDA&#xff09; 目录 1. 设置 1.1 导入库1.2 导入数据1.3 数据集特征1.4 数据集属性 2. 探索训练集和测试集 2.1 训练集 - 快速概览2.2 训练集 - 基本统计2.3 测试集 - 快速概览2.4 测试集 - 基本统计 3. 特征分布4. 数据不平衡检查…

websocket 介绍

目录 1&#xff0c;前端如何实现即时通讯短轮询长轮询 2&#xff0c;websocket2.1&#xff0c;握手2.2&#xff0c;握手过程举例2.3&#xff0c;socket.io 3&#xff0c;websocket 对比 http 的优势 1&#xff0c;前端如何实现即时通讯 在 websocket 协议出现之前&#xff0c;…

无需手动搜索!轻松创建IntelliJ IDEA快捷方式的Linux教程

轻松创建IntelliJ IDEA快捷方式的Linux教程 一、IntelliJ IDEA简介二、在Linux系统中创建快捷方式的好处三、命令行创建IntelliJ IDEA快捷方式四、图形界面创建IntelliJ IDEA快捷方式五、常见问题总结 一、IntelliJ IDEA简介 IntelliJ IDEA是一个由JetBrains搞的IDE&#xff0…

vue3+luckyexcel+php在线编辑excel文件

开发过程中&#xff0c;需要开发一个在线编辑excel文档的功能&#xff0c;找到了这个合适的组件 Luckysheet &#xff0c;一款纯前端类似excel的在线表格&#xff0c;功能强大、配置简单、完全开源。 可以导入文档&#xff0c;预览、编辑、保存、导出等功能&#xff0c;可以满…

侦探IP“去推理化”:《名侦探柯南》剧场版走过26年

2023年贺岁档&#xff0c;柯南剧场版的第26部《黑铁的鱼影》如期上映。 这部在日本狂卷票房128亿日元的作品&#xff0c;被誉为有史以来柯南剧场版在商业成绩上最好的一部。 但该作在4月份日本还未上映前&#xff0c;就于国内陷入了巨大的争议。 试映内容里&#xff0c;灰原…

Android原生实现分段选择

六年前写的一个控件&#xff0c;一直没有时间总结&#xff0c;趁年底不怎么忙&#xff0c;整理一下之前写过的组件。供大家一起参考学习。废话不多说&#xff0c;先上图。 一、效果图 实现思路使用的是radioGroup加radiobutton组合方式。原理就是通过修改RadioButton 的backgr…

云计算:OpenStack 配置二层物理网卡为三层桥的接口

目录 一、理论 1.OpenStack 二、实验 1. Linux系统修改网卡 2.OpenStack 配置二层物理网卡为三层桥的接口 一、理论 1.OpenStack &#xff08;1&#xff09;概念 OpenStack是一个开源的云计算管理平台项目&#xff0c;是一系列软件开源项目的组合。由NASA(美国国家航空…

为什么要运营海外社媒?海外云手机能发挥什么作用?

基于海外社媒在全球范围内拥有的大量流量&#xff0c;海外社媒运营成为了品牌推广、内容创作和用户互动的重要途径。本文将探讨海外社媒运营的重要性&#xff0c;并介绍海外云手机在这一过程中的卓越帮助。 海外社媒运营的重要性 首先&#xff0c;海外社媒运营有助于企业扩大品…

学习笔记:数据挖掘与机器学习

文章目录 一、数据挖掘、机器学习、深度学习的区别&#xff08;一&#xff09;数据挖掘&#xff08;二&#xff09;机器学习&#xff08;三&#xff09;深度学习&#xff08;四&#xff09;总结 二、数据挖掘体系三、数据挖掘的流程四、典型的数据挖掘系统 一、数据挖掘、机器学…

卷积神经网络 反向传播

误差的计算 softmax 经过softmax处理后所有输出节点概率和为1 损失&#xff08;激活函数&#xff09; 多分类问题&#xff1a;输出只可能归于某一个类别&#xff0c;不可能同时归于多个类别。 误差的反向传播 求w的误差梯度 权值的更新 首先是更新输出层和隐藏层之间的权重…

SMART PLC编码器长度测量功能块

SMART PLC编码器转速测量功能块详细算法和源代码&#xff0c;请参考下面文章链接&#xff1a; https://rxxw-control.blog.csdn.net/article/details/134375193https://rxxw-control.blog.csdn.net/article/details/134375193SMART PLC编码器线速度测量功能块算法和源代码请参…