【头歌实训】kafka-入门篇

文章目录

  • 第1关:kafka - 初体验
    • 任务描述
    • 相关知识
      • Kafka 简述
      • Kafka 应用场景
      • Kafka 架构组件
      • kafka 常用命令
    • 编程要求
    • 测试说明
    • 答案代码
  • 第2关:生产者 (Producer ) - 简单模式
    • 任务描述
    • 相关知识
      • Producer 简单模式
      • Producer 的开发步骤
      • Kafka 常用配置参数
    • 编程要求
    • 测试说明
    • 答案代码
  • 第3关:消费者( Consumer)- 自动提交偏移量
    • 任务描述
    • 相关知识
      • Kafka 消费者开发步骤
      • 自动提交偏移量的优劣
    • 编程要求
    • 测试说明
    • 答案代码
  • 第4关:消费者( Consumer )- 手动提交偏移量
    • 任务描述
    • 相关知识
      • Kafka 两种手动提交方式
    • 编程要求
    • 测试说明
    • 答案代码

第1关:kafka - 初体验

任务描述

本关任务:使用 Kafka 命令创建一个副本数量为1、分区数量为3的 Topic 。

相关知识

为了完成本关任务,你需要掌握:1.如何使用 Kafka 的常用命令。

课程视频《Kafka简介》

Kafka 简述

类 JMS 消息队列,结合 JMS 中的两种模式,可以有多个消费者主动拉取数据,在 JMS 中只有点对点模式才有消费者主动拉取数据。

Kafka 是一个生产-消费模型。

Producer :消息生产者,就是向 Kafka Broker 发消息的客户端。

Consumer :消息消费者,向 Kafka Broker 取消息的客户端。

Topic :我们可以理解为一个队列。

Consumer Group (CG):这是 Kafka 用来实现一个 Topic 消息的广播(发给所有的 Consumer )和单播(发给任意一个 Consumer )的手段。一个 Topic 可以有多个CG。Topic 的消息会复制(不是真的复制,是概念上的)到所有的 CG ,但每个 Partion 只会把消息发给该 CG 中的一个 Consumer 。如果需要实现广播,只要每个 Consumer 有一个独立的 CG 就可以了。要实现单播只要所有的 Consumer 在同一个 CG。用CG 还可以将 Consumer 进行自由的分组而不需要多次发送消息到不同的 Topic。

Broker :一台 Kafka 服务器就是一个 Broker 。一个集群由多个Broker组成。一个 Broker 可以容纳多个 Topic。

Partition :为了实现扩展性,一个非常大的 Topic 可以分布到多个Broker(即服务器)上,一个 Topic 可以分为多个 Partition ,每个 Partition 是一个有序的队列。Partition 中的每条消息都会被分配一个有序的 Id( Offset )。Kafka 只保证按一个 Partition 中的顺序将消息发给 Consumer ,不保证一个 Topic 的整体(多个 Partition间)的顺序。

Offset :Kafka 的存储文件都是按照 Offset . index 来命名,用Offset 做名字的好处是方便查找。例如你想找位于2049的位置,只要找到 2048 . index 的文件即可。当然 the first offset 就是 00000000000 . index。

Kafka 应用场景

  • 日志收集:一个公司可以用 Kafka 可以收集各种服务的 Log ,通过Kafka 以统一接口服务的方式开放给各种 Consumer ,例如 Hadoop 、Hbase 、Solr 等。
  • 消息系统:解耦和生产者和消费者、缓存消息等。
  • 用户活动跟踪:Kafka 经常被用来记录 Web 用户或者 App 用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到 Kafka 的Topic 中,然后订阅者通过订阅这些 Topic 来做实时的监控分析,或者装载到 Hadoop 、数据仓库中做离线分析和挖掘。
  • 运营指标:Kafka 也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。
  • 流式处理:比如 Spark streaming 和 Storm、Flink。
  • 事件源。

Kafka 架构组件

Kafka 中发布订阅的对象是 Topic。我们可以为每类数据创建一个 Topic ,把向 Topic 发布消息的客户端称作 Producer ,从 Topic 订阅消息的客户端称作 Consumer 。Producers 和 Consumers 可以同时从多个 Topic 读写数据。一个 Kafka 集群由一个或多个 Broker 服务器组成,它负责持久化和备份具体的 Kafka 消息。

img

kafka 常用命令

  • 查看当前服务器中的所有 Topic bin/kafka-topics.sh --list --zookeeper zk01:2181
  • 创建 Topic ./kafka-topics.sh --create --zookeeper zk01:2181 --replication-factor 1 --partitions 3 --topic first

说明:replication-factor 是指副本数量,partitions 是指分区数量

  • 删除 Topic bin/kafka-topics.sh --delete --zookeeper zk01:2181 --topic test 需要 server.properties 中设置 delete.topic.enable = true 否则只是标记删除或者直接重启。
  • 通过 Shell 命令发送消息 kafka-console-producer.sh --broker-list kafka01:9092 --topic demo
  • 通过 Shell 消费消息 bin/kafka-console-consumer.sh --zookeeper zk01:2181 --from-beginning --topic test1
  • 查看消费位置 kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --zookeeper zk01:2181 --group testGroup
  • 查看某个 Topic 的详情 kafka-topics.sh --topic test --describe --zookeeper zk01:2181

说明 :此处的 zk01 是 Zookeeper 的 IP 地址, kafka01 是 Broker 的 IP 地址

编程要求

根据提示,在右侧编辑器补充代码完成以下任务。

  • 创建一个副本数量为1、分区数量为3、名为 demo 的 Topic
  • 查看所有 Topic
  • 查看名为 demo 的 Topic 的详情信息

注意:Broker 的 IP 为127.0.0.1,Zookeeper 的 IP 为127.0.0.1

扩展任务:

  • 使用一个命令行开启 Kafka Producer Shell 窗口并对名为 demo 的 Topic 进行数据生产
  • 使用另一个命令行开启 Kafka Customer Shell 窗口并对名为 demo 的 Topic进行消费

说明:扩展任务没有进行评测,此任务目的是为了让用户体验下 Kafka 的数据生产与数据消费的两个环节,更好理解 Kafka

测试说明

平台会对你的命令进行检验并运行,你只需要按照任务需求,补充右侧编辑器的代码,然后点击评测就ok了。 - -

特别注意:为了确保运行拥有一个正常的运行环境,请在评测之前,重置下运行环境

img

答案代码

命令行代码

kafka-server-start.sh  /opt/kafka_2.11-1.1.0/config/server.properties

shell 文件

#!/bin/bash#1.创建一个副本数量为1、分区数量为3、名为 demo 的 Topic
kafka-topics.sh --create --zookeeper 127.0.0.1:2181 --replication-factor 1 --partitions 3 --topic demo#2.查看所有Topic
kafka-topics.sh --list --zookeeper  127.0.0.1:2181#3.查看名为demo的Topic的详情信息
kafka-topics.sh --topic demo --describe --zookeeper 127.0.0.1:2181

第2关:生产者 (Producer ) - 简单模式

任务描述

本关任务:编写一个 Kafka 的 Producer 进行数据生产。

相关知识

为了完成本关任务,你需要掌握:1.如何使用 Kafka 的 Producer API 进行数据生产。

课程视频《使用Python生产消费kafka的数据》

Producer 简单模式

Producer 采用默认分区方式将消息散列的发送到各个分区当中。

Producer 的开发步骤

  1. 创建配置文件对象 Properties props = new Properties();

  2. 设置连接 Kakfa 的基本参数,如下:

    props.put("bootstrap.servers", "kafka-01:9092,kafka-02:9092,kafka-03:9092");
    props.put("acks", "1");
    props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    
  3. 创建 Kafka 生产者对象Producer<String, String> producer = new KafkaProducer<>(props);

  4. 发送消息producer.send(new ProducerRecord<String, String>("Topic", "key", "value"));

Kafka 常用配置参数

名称说明默认值有效值重要性
bootstrap.serverskafka集群的broker-list,如: hadoop01:9092,hadoop02:9092必选
key.serializerkey的序列化器ByteArraySerializer StringSerializer必选
value.serializervalue的序列化器ByteArraySerializer StringSerializer必选
acks确保生产者可靠性设置,有三个选项: acks=0:不等待成功返回 acks=1:等Leader写成功返回 acks=all:等Leader和所有ISR中的Follower写成功返回,all也可以用-1代替-10,1,-1,all建议必选
buffer.memoryProducer总体内存大小33554432不要超过物理内存,根据实际情况调整建议必选
batch.size每个partition的未发送消息大小16384根据实际情况调整建议必选

编程要求

根据提示,在右侧编辑器补充代码,使用 Kafka Producer API 对名为 demo 的 Topic 进行数据生产。

测试说明

平台会对你的命令进行检验并运行,你只需要按照任务需求,补充右侧编辑器的代码,然后点击评测就ok了。 - -

答案代码

conf/server.properties ,如果用 config/server.properties 的话需要把 log.dirsnum.partitions 这两个配置改了

cd $KAFKA_HOME/
vim config/server.properties# 使用 :/log.dirs 找到位置,或者直接 :$ 在最后一行加 
log.dirs=/export/servers/logs/kafka/
num.partitions=2

命令行执行代码

# kafka 依赖 zookeeper,所以需要先启动 zookeeper 服务
cd $ZOOKEEPER_HOME/
bin/zkServer.sh start conf/zoo.cfg
# 启动 Kafka 服务
cd $KAFKA_HOME/
bin/kafka-server-start.sh -daemon conf/server.properties

Java 代码

package net.educoder;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
/*** kafka producer 简单模式*/
public class App {public static void main(String[] args) {/*** 1.创建配置文件对象,一般采用 Properties*//**----------------begin-----------------------*/Properties props = new Properties();/**-----------------end-------------------------*//*** 2.设置kafka的一些参数*          bootstrap.servers --> kafka的连接地址 127.0.0.1:9092*          key、value的序列化类 -->org.apache.kafka.common.serialization.StringSerializer*          acks:1,-1,0*//**-----------------begin-----------------------*/props.put("bootstrap.servers", "127.0.0.1:9092");props.put("acks", "1");props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");/**-----------------end-------------------------*//*** 3.构建kafkaProducer对象*//**-----------------begin-----------------------*/Producer<String, String> producer = new KafkaProducer<>(props);/**-----------------end-------------------------*/for (int i = 0; i < 100; i++) {ProducerRecord<String, String> record = new ProducerRecord<>("demo", i + "", i + "");/*** 4.发送消息*//**-----------------begin-----------------------*/producer.send(record);/**-----------------end-------------------------*/}producer.close();}
}

第3关:消费者( Consumer)- 自动提交偏移量

任务描述

本关任务:编写一个 Kafka 消费者并设置自动提交偏移量进行数据消费。

相关知识

为了完成本关任务,你需要掌握:1.如何编写 Kafka 消费者,2.如何使用自动提交偏移量。

Kafka 消费者开发步骤

  1. 创建配置文件对象 Properties props = new Properties();

  2. 设置连接 Kakfa 的基本参数,如下:

    //设置kafka集群的地址
    props.put("bootstrap.servers", 127.0.0.1:9092");
    //设置消费者组,组名字自定义,组名字相同的消费者在一个组
    props.put("group.id", "g1");
    //开启offset自动提交
    props.put("enable.auto.commit", "true");
    //自动提交时间间隔
    props.put("auto.commit.interval.ms", "1000");
    //序列化器
    props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
    props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
    
  3. 创建 Kafka 消费者对象 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

  4. 订阅主题 Topic consumer.subscribe(Arrays.asList("demo"));

  5. 消费 Topic 的数据

    while (true) {ConsumerRecords<String, String> records = consumer.poll(100);for (ConsumerRecord<String, String> record : records)System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());}
    

自动提交偏移量的优劣

消费者拉取数据之后自动提交偏移量,不关心后续对消息的处理是否正确。

  • 优点:消费快,适用于数据一致性弱的业务场景
  • 缺点:消息很容易丢失

编程要求

使用 Kafka Consumer API 对名为 demoTopic 进行消费,并设置自动提交偏移量。

测试说明

平台会对你的命令进行检验并运行,你只需要按照任务需求,补充右侧编辑器的代码,然后点击评测就 ok 了。 - -

答案代码

package net.educoder;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.util.Arrays;
import java.util.Properties;
public class App {public static void main(String[] args) {Properties props = new Properties();/**--------------begin----------------*///1.设置kafka集群的地址props.put("bootstrap.servers", "127.0.0.1:9092");//2.设置消费者组,组名字自定义,组名字相同的消费者在一个组props.put("group.id", "g1");//3.开启offset自动提交props.put("enable.auto.commit", "true");//4.自动提交时间间隔props.put("auto.commit.interval.ms", "1000");//5.序列化器props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");/**---------------end---------------*//**--------------begin----------------*///6.创建kafka消费者KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);//7.订阅kafka的topicconsumer.subscribe(Arrays.asList("demo"));/**---------------end---------------*/int i = 1;while (true) {/**----------------------begin--------------------------------*///8.poll消息数据,返回的变量为crsConsumerRecords<String, String> crs = consumer.poll(100);for (ConsumerRecord<String, String> cr : crs) {System.out.println("consume data:" + i);i++;}/**----------------------end--------------------------------*/if (i > 10) {return;}}}
}

第4关:消费者( Consumer )- 手动提交偏移量

任务描述

本关任务:编写一个 Kafka 消费者并使用手动提交偏移量进行数据消费。

相关知识

为了完成本关任务,你需要掌握:1.如何编写 Kafka 消费者,2.如何手动提交偏移量。

Kafka 两种手动提交方式

  1. 异步提交( CommitAsync ):

异步模式下,提交失败也不会尝试提交。消费者线程不会被阻塞,因为异步操作,可能在提交偏移量操作结果未返回时就开始下一次拉取操作。

  1. 同步提交( CommitSync ):

同步模式下,提交失败时一直尝试提交,直到遇到无法重试才结束。同步方式下,消费者线程在拉取消息时会被阻塞,直到偏移量提交操作成功或者在提交过程中发生错误。

注意:实现手动提交前需要在创建消费者时关闭自动提交,设置enable.auto.commit=false

编程要求

根据提示,在右侧编辑器补充代码,使用 Kafka Producer API 对名为 demo 的 Topic 进行数据生产

测试说明

平台会对你的命令进行检验并运行,你只需要按照任务需求,补充右侧编辑器的代码,然后点击评测就ok了。 - -

答案代码

命令行代码

# kafka 依赖 zookeeper,所以需要先启动 zookeeper 服务
cd $ZOOKEEPER_HOME/
bin/zkServer.sh start conf/zoo.cfg
# 启动 Kafka 服务
cd $KAFKA_HOME/
bin/kafka-server-start.sh -daemon conf/server.properties

Java 代码

package net.educoder;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;
public class App {public static void main(String[] args){Properties props = new Properties();/**-----------------begin------------------------*///1.设置kafka集群的地址props.put("bootstrap.servers", "127.0.0.1:9092");//2.设置消费者组,组名字自定义,组名字相同的消费者在一个组props.put("group.id", "g1");//3.关闭offset自动提交props.put("enable.auto.commit", "false");//4.序列化器props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");/**-----------------end------------------------*//**-----------------begin------------------------*///5.实例化一个消费者KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);//6.消费者订阅主题,订阅名为demo的主题consumer.subscribe(Arrays.asList("demo"));/**-----------------end------------------------*/final int minBatchSize = 10;List<ConsumerRecord<String, String>> buffer = new ArrayList<>();while (true) {ConsumerRecords<String, String> records = consumer.poll(100);for (ConsumerRecord<String, String> record : records) {buffer.add(record);}if (buffer.size() >= minBatchSize) {for (ConsumerRecord bf : buffer) {System.out.printf("offset = %d, key = %s, value = %s%n", bf.offset(), bf.key(), bf.value());}/**-----------------begin------------------------*///7.手动提交偏移量consumer.commitSync();/**-----------------end------------------------*/buffer.clear();return;}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/226237.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ROS多机通信

1&#xff1a;安装ssh sudo apt-get install openssh-server ps -e|grep ssh2&#xff1a;网络静态IP设置 3&#xff1a;配置文件修改 sudo gedit /etc/hosts192.168.3.11 用户名 192.168.3.22 用户名另一台4&#xff1a;重启网络 sudo /etc/init.d/network-manager resta…

2023年度业务风险报告:四个新风险趋势

目录 倒票的黄牛愈加疯狂 暴增的恶意网络爬虫 愈加猖獗的羊毛党 层出不穷的新风险 业务风险呈现四个趋势 防御云业务安全情报中心“2023年业务风险数据”统计显示&#xff0c;恶意爬虫风险最多&#xff0c;占总数的37.8%&#xff1b;其次是虚假账号注册&#xff0c;占18.79%&am…

MySQL事务、四大原则、执行步骤、四种隔离级别、锁、脏读、脏写等

MySQL事务 MySQL事务1.什么是事务&#xff1f;2.事务的四大原则3.事务执行的步骤4、事务的隔离性5、MySQL中的锁 MySQL事务 模拟一个转账业务&#xff1a; 上图中的sql语句&#xff1a; update from table set money mongey - 100 where name A; update from table set mone…

RabbitMQ 报错:Failed to declare queue(s):[QD, QA, QB]

实在没想到会犯这种低级错误。 回顾整理一下吧&#xff1a; 原因&#xff1a;SpringBoot主配置类默认只会扫描自己所在的包及其子包下面的组件。其他位置的配置不会被扫描。 如果非要使用其他位置&#xff0c;就需要在启动类上面指定新的扫描位置。注意新的扫描位置会覆盖默…

PHP的Laravel的数据库迁移

1.默认迁移文件 2.数据库迁移 在终端输入以下代码 php artisan migrate 我的报错啦&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 数据库里面只有两张表&#xff0c;实际上应该有四张的&#xff01;&#xff01;&#xff01; 解决方法&#xff1a; 反正表已…

基于动态窗口的航线规划

MATLAB2016b可以运行 % ------------------------------------------------------------------------- % File : DWA 算法 % Discription : Mobile Robot Motion Planning with Dynamic Window Approach % Author :Yuncheng Jiang % License : Modified BSD Software License A…

【JDK21】详解虚拟线程

目录 1.概述 2.虚拟线程是为了解决哪些问题 2.1.线程切换的巨大代价 2.2.哪些情况会造成线程的切换 2.3.线程资源是有限的 3.虚拟线程 4.适用场景 1.概述 你发任你发&#xff0c;我用JAVA8&#xff1f;JDK21可能要对这句话say no了。 现在Oracle JDK是每4个版本&#x…

什么是https证书?

HTTPS证书&#xff0c;也称为SSL&#xff08;Secure Sockets Layer&#xff09;证书或TLS&#xff08;Transport Layer Security&#xff09;证书&#xff0c;是一种数字证书&#xff0c;用于在网络上建立安全的加密连接。它的主要目的是确保在互联网上进行的数据传输的安全性和…

工具系列:TimeGPT_(6)同时预测多个时间序列

TimeGPT提供了一个强大的多系列预测解决方案&#xff0c;它涉及同时分析多个数据系列&#xff0c;而不是单个系列。该工具可以使用广泛的系列进行微调&#xff0c;使您能够根据自己的特定需求或任务来定制模型。 # Import the colab_badge module from the nixtlats.utils pac…

AD使用的一些基本知识

主页工厂打板时&#xff0c;有些过孔要求在0.3/0.5以上&#xff0c;还有其他一些工艺要求也要注意 用keep-out layer还是mechanical layer 当做切割边线&#xff0c;都可以&#xff0c;也可以看制版工厂的要求 导出BOM表时&#xff0c;是以comment分类的&#xff0c;通常情况…

php-ssrf

漏洞描述&#xff1a; SSRF(Server-Side Request Forgery:服务器端请求伪造) 是一种由攻击者构造形成由服务端发起请求的一个安全漏洞。 一般情况下&#xff0c;SSRF攻击的目标是从外网无法访问的内部系统。&#xff08;正是因为它是由服务端发起的&#xff0c;所以它能够请求…

FTP原理与配置

FTP是用来传送文件的协议。使用FTP实现远程文件传输的同时&#xff0c;还可以保证数据传输的可靠性和高效性。 FTP的应用 FTP 提供了一种在服务器和客户机之间上传和下载文件的有效方式。在企业网络中部署一台FTP服务器&#xff0c;将网络设备配置为FTP客户端&#xff0c;则可…

大数据开发之Sqoop详细介绍

测试环境 CDH 6.3.1 Sqoop 1.4.7 一.Sqoop概述 Apache Sqoop&#xff08;SQL-to-Hadoop&#xff09;项目旨在协助RDBMS与Hadoop之间进行高效的大数据交流。用户可以在 Sqoop 的帮助下&#xff0c;轻松地把关系型数据库的数据导入到 Hadoop 与其相关的系统 (如HBase和Hive)中&…

Android : 画布绘制矩形和文字 让其居中显示简单应用

示例图&#xff1a; CenterView.java package com.example.demo;import android.content.Context; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import android.util.Log; import android.view.View;public class Center…

基于ChatGpt,Java,SpringBoot,Vue,Milvus向量数据库的定制化聊天Web demo

customized chat GitHub - bigcyy/customized-chatgpt: 基于ChatGpt&#xff0c;Java&#xff0c;SpringBoot&#xff0c;Vue&#xff0c;Milvus向量数据库的定制化聊天Web demo 简介 基于ChatGpt&#xff0c;Java&#xff0c;SpringBoot&#xff0c;Vue&#xff0c;Milvus向…

华为---登录USG6000V防火墙---console、web、telnet、ssh方式登录

目录 一、环境搭建 二、第一次登录USG6000V防火墙&#xff0c;即通过console方式登录 三、通过web管理界面创建用户 四、web登录USG6000V防火墙 1. 用web创建的用户通过web方式登录USG6000V防火墙 2. 命令行创建的用户通过web方式登录USG6000V防火墙 五、ssh方式登录USG60…

TPRI-DMP平台介绍

TPRI-DMP平台介绍 TPRI-DMP平台概述 TPRI-DMP为华能集团西安热工院自主产权的工业云PaaS平台&#xff0c;已经过13年的发展和迭代&#xff0c;其具备大规模能源电力行业生产应用软件开发和运行能力。提供TPRI-DMP平台主数据管理、业务系统开发与运行、应用资源管理与运维监控…

【C语言】程序练习(二)

大家好&#xff0c;这里是争做图书馆扫地僧的小白。 个人主页&#xff1a;争做图书馆扫地僧的小白_-CSDN博客 目标&#xff1a;希望通过学习技术&#xff0c;期待着改变世界。 目录 前言 一、运算符练习 1 算术运算符 1.1 练习题&#xff1a; 2 自加自减运算符 3 关系运…

ios环境搭建_xcode安装及运行源码

目录 1 xcode 介绍 2 xcode 下载 3 xocde 运行ios源码 1 xcode 介绍 Xcode 是运行在操作系统Mac OS X上的集成开发工具&#xff08;IDE&#xff09;&#xff0c;由Apple Inc开发。Xcode是开发 macOS 和 iOS 应用程序的最快捷的方式。Xcode 具有统一的用户界面设计&#xff0…

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第一节 理解堆与栈

深入浅出图解C#堆与栈 C# HeapingVS Stacking第一节 理解堆与栈 [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第一节 理解堆与栈](https://mp.csdn.net/mdeditor/101021023)[深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第二节 栈基本工作原理](https://mp.csdn.n…