基于YOLOv8的遥感SAR舰船小目标识别

 💡💡💡本文摘要:基于YOLOv8的遥感SAR舰船小目标,阐述了整个数据制作和训练可视化过程

1.YOLOv8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.遥感SAR舰船数据集介绍

  SSDD总共包含1160张图片,2456个舰船,平均每张图片的舰船数量为2.12

按照7:2:1划分了training val test

2.1 split_train_val.py

# coding:utf-8import os
import random
import argparseparser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()trainval_percent = 0.9
train_percent = 0.7
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):os.makedirs(txtsavepath)num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')for i in list_index:name = total_xml[i][:-4] + '\n'if i in trainval:file_trainval.write(name)if i in train:file_train.write(name)else:file_val.write(name)else:file_test.write(name)file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

2.2 voc_label.py生成适合YOLOv8训练的txt

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ["ship"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').text#difficult = obj.find('Difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('labels/'):os.makedirs('labels/')image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()list_file = open('%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

3.如何训练YOLOv8

3.1 配置SSDD.yaml

ps:建议填写绝对路径

path:./data/SSDD  # dataset root dir
train: train.txt  # train images (relative to 'path') 118287 images
val: val.txt  # val images (relative to 'path') 5000 images# number of classes
nc: 1# class names
names:0: ship

3.2 如何训练

from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/attention/yolov8.yaml')#model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data='data/SSDD/SSDD.yaml',cache=False,imgsz=640,epochs=200,batch=16,close_mosaic=10,workers=0,device='0',optimizer='SGD', # using SGDproject='runs/train',name='exp',)

3.3 训练可视化结果

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

YOLOv8 summary (fused): 168 layers, 3005843 parameters, 0 gradients, 8.1 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 10/10 [00:07<00:00,  1.38it/s]all        314        719       0.94      0.935      0.968      0.625

预测结果: 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/226664.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新AI绘画Midjourney绘画提示词Prompt教程

一、Midjourney绘画工具 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭…

Could not resolve com.github.CymChad:BaseRecyclerViewAdapterHelper:2.9.28.

1、首先进入阿里云maven仓库&#xff0c;在搜索栏输入无法下载的依赖名称&#xff0c;查询现有版本号&#xff0c;可以看到这里有2.9.34。 2、在build.gradle(Project)的buildscript闭包下替换为阿里云maven仓库&#xff1a; maven { url https://www.jitpack.io } maven { u…

3D游戏角色建模纹理贴图处理

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 在本文中&#xff0c;我们将介绍 3D 纹理的基础知识&#xff0c;并讨…

算法设计与分析实验报告-贪心算法

校课程的简单实验报告。 算法设计与分析实验报告-递归与分治策略 算法设计与分析实验报告-动态规划算法 算法设计与分析实验报告-贪心算法 dijkstra迪杰斯特拉算法&#xff08;邻接表法&#xff09; 算法设计与分析实验报告-回溯法 算法设计与分析实验报告-分支限界法 …

Spring高手之路-@Autowired和@Resource注解异同点

目录 相同点 不同点 1.来源不同。 2.包含的属性不同 3.匹配方式&#xff08;装配顺序&#xff09;不同。 ​编辑 4.支持的注入对象类型不同 5.应用地方不同 相同点 都可以实现依赖注入&#xff0c;通过注解将需要的Bean自动注入到目标类中。都可以用于注入任意类型的Bean…

什么是uniapp?用uniapp开发好不好用?

随着移动应用市场的持续发展&#xff0c;开发者们面临着不断增长的需求和多样化的平台选择。在这个背景下&#xff0c;UniApp 应运而生&#xff0c;成为一种跨平台开发框架&#xff0c;为开发者提供了一种高效、简便的方式来开发移动应用程序。利用 UniApp 开发应用程序可以节省…

实战10 角色管理

目录 1、角色后端接口 2、角色列表查询 2.1 效果图 2.2页面原型代码 2.3 角色api代码 role.js 2.4 查询角色列表代码 4、 新增和编辑角色 5、删除角色 6、分配权限 6.1 分配权限思路 6.2 分配权限回显接口 6.3 分配权限回显前端实现 6.4分配权限后端接口 6.4.1 R…

Ubuntu 22.04.3 Server 设置静态IP 通过修改yaml配置文件方法

目录 1.查看网卡信息 2.修改yaml配置文件 3.应用新的网络配置 4.重新启动网络服务 文章内容 本文介绍Ubuntu 22.04.3 Server系统通过修改yaml配置文件配置静态 ip 的方法。 1.查看网卡信息 使用ifconfig命令查看网卡信息获取网卡名称​ 如果出现Command ifconfig not fo…

Solana生态全方位解析科普和钱包(bitget钱包)

如果你对它感兴趣&#xff0c;或者想探索一个具有巨大潜力的公链或者生态&#xff0c;那么Solana绝对值得你关注。在这篇文章中&#xff0c;我们将带你全方位了解Solana&#xff0c;并为你推荐一款绝佳的Solana钱包&#xff01; 什么是 Solana (SOL)&#xff1f; Solana (SOL)…

UniApp小程序使用vant引入vant weapp

HBuilder X里新建项目指路 HBuilderX新建项目 安装node.js指路 安装node.js 1.通过npm安装 查看npm环境 //打开终端输入命令查看版本 npm -version 1.1.右键打开外部终端窗口 1.2.输入npm init -y命令 1.3.通过命令安装 npm i vant/weapp1.3.3 -S --production 1.4.打开工具…

SpringBoot+AOP+Redis 防止重复请求提交

本文项目基于以下教程的代码版本&#xff1a; https://javaxbfs.blog.csdn.net/article/details/135224261 代码仓库: springboot一些案例的整合_1: springboot一些案例的整合 1、实现步骤 2.引入依赖 我们需要redis、aop的依赖。 <dependency><groupId>org.spr…

Typora使用PicGo+Gitee上传图片报错403 Forbidden

Typora使用PicGoGitee上传图片报错403 Forbidden Typora使用PicGoGitee上传图片&#xff0c;上传失败了&#xff0c;错误信息如下 打开PicGo的日志文件查看&#xff0c;可以看到错误详情如下 换了一个插件github-plus重新配置&#xff0c;解决了这个问题 再打开日志查看&…

扫雷(c语言)

先开一个test.c文件用来游戏的逻辑测试&#xff0c;在分别开一个game.c文件和game.h头文件用来实现游戏的逻辑 主要步骤&#xff1a; 游戏规则&#xff1a; 输入1&#xff08;0&#xff09;开始&#xff08;结束&#xff09;游戏&#xff0c;输入一个坐标&#xff0c;如果该坐…

【网络安全 | CTF】FlatScience

该题考察SQL注入 正文 后台扫到robots.txt 页面内容如下&#xff1a; 进入login.php 页面源代码如图&#xff1a; 传参debug得到php代码&#xff1a; <?php if(isset($_POST[usr]) && isset($_POST[pw])){$user $_POST[usr];$pass $_POST[pw];$db new SQLite3…

CEC2017(Python):五种算法(HHO、RFO、OOA、PSO、GWO)求解CEC2017

一、5种算法简介 1、哈里斯鹰优化算法HHO 2、红狐优化算法RFO 3、鱼鹰优化算法OOA 4、粒子群优化算法PSO 5、灰狼优化算法GWO 二、CEC2017简介 参考文献&#xff1a; [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem d…

MySQL运维实战(1.2)安装部署:使用二进制安装部署

作者&#xff1a;俊达 引言 上一篇我们使用了RPM进行安装部署&#xff0c;这是一种安装快速、简化部署和管理过程、与操作系统提供的包管理工具紧密集成的部署方法。此外&#xff0c;当你需要更高的灵活性和自定义性&#xff0c;并且愿意承担一些额外的手动配置和管理工作&am…

计算机网络——应用层与网络安全(六)

前言&#xff1a; 前几章我们已经对TCP/IP协议的下四层已经有了一个简单的认识与了解&#xff0c;下面让我们对它的最顶层&#xff0c;应用层进行一个简单的学习与认识&#xff0c;由于计算机网络多样的连接形式、不均匀的终端分布&#xff0c;以及网络的开放性和互联性等特征&…

MR实战:统计总分与平均分

文章目录 一、实战概述二、提出任务三、完成任务&#xff08;一&#xff09;准备数据1、在虚拟机上创建文本文件2、上传文件到HDFS指定目录 &#xff08;二&#xff09;实现步骤1、创建Maven项目2、添加相关依赖3、创建日志属性文件4、创建成绩映射器类5、创建成绩驱动器类6、启…

ubuntu虚拟机终端(terminal)打不开

问题描述 ubuntu&#xff08;16.04 LTS 64位&#xff09;虚拟机终端&#xff08;terminal&#xff09;打不开 问题原因 我是ctrlaltF5&#xff09;进入命令行模式&#xff0c;也就是无图形界面&#xff0c;这时候会让你输入用户名和密码: 运行命令: gnome-terminal 会看到有…

年底离职潮来了!来聊聊程序员的离职跳槽

每当元旦春节将至的时候&#xff0c;办公室的气氛也诡异起来&#xff0c;空气弥漫着离职的味道。因为积累许久的负面情绪长期无法获得释放&#xff0c;打工人对工作的容忍度越发稀薄了起来&#xff0c;有的打工人看似正襟危坐地坐在工位上&#xff0c;实则愤然辞职的念头在心里…