基于Wenet长音频分割降噪识别

Wenet是一个流行的语音处理工具,它专注于长音频的处理,具备分割、降噪和识别功能。它的长音频分割降噪识别功能允许对长时间录制的音频进行分段处理,首先对音频进行分割,将其分解成更小的段落或语音片段。接着进行降噪处理,消除可能存在的噪音、杂音或干扰,提高语音质量和清晰度。最后,Wenet利用先进的语音识别技术对经过处理的音频段落进行识别,将其转换为文字或语音内容,从而实现对长音频内容的准确识别和转录。这种功能可以应用于许多领域,如语音识别、语音转文字、语音翻译以及音频内容分析等,为长音频数据的处理提供了高效而准确的解决方案。

在这里插入图片描述

支持上传(WAV、MP3、M4A、FLAC、AAC)

体验一下
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

import streamlit as st
import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from pydub import AudioSegment
from noisereduce import reduce_noise
import wenet
import base64
import os
import numpy as np# 载入模型
chs_model = wenet.load_model('chinese')
en_model = wenet.load_model('english')# 执行语音识别的函数
def recognition(audio, lang='CN'):if audio is None:return "输入错误!请上传音频文件!"if lang == 'CN':ans = chs_model.transcribe(audio)elif lang == 'EN':ans = en_model.transcribe(audio)else:return "错误!请选择语言!"if ans is None:return "错误!没有文本输出!请重试!"txt = ans['text']return txtdef reduce_noise_segmented(input_file,chunk_duration_ms,frame_rate):try:audio = AudioSegment.from_file(input_file,format=input_file.name.split(".")[-1])# 将双声道音频转换为单声道audio = audio.set_channels(1)# 压缩音频的帧率为 16000audio = audio.set_frame_rate(frame_rate)duration = len(audio)# 分段处理音频chunked_audio = []start = 0while start < duration:end = min(start + chunk_duration_ms, duration)chunk = audio[start:end]chunked_audio.append(chunk)start = endreturn chunked_audioexcept Exception as e:st.error(f"发生错误:{str(e)}")return Nonedef extract_keywords(result):word_list = jieba.lcut(result)return word_listdef get_base64_link(file_path, link_text):with open(file_path, "rb") as file:audio_content = file.read()encoded = base64.b64encode(audio_content).decode('utf-8')href = f'<a href="data:audio/wav;base64,{encoded}" download="processed_audio.wav">{link_text}</a>'return hrefdef main():st.title("语音识别与词云生成")uploaded_file = st.file_uploader("上传音乐文件", type=["wav","mp3","m4a","flac","aac"])if uploaded_file:st.audio(uploaded_file, format='audio/wav')segment_duration = st.slider("分段处理时长(毫秒)", min_value=1000, max_value=10000, value=5000, step=1000)frame_rate = st.slider("压缩帧率", min_value=8000, max_value=48000, value=16000, step=1000)language_choice = st.selectbox("选择语言", ('中文', '英文'))bu=st.button("识别语音")if bu:if uploaded_file:st.success("正在识别中,请稍等...")output_audio_path = os.path.basename(uploaded_file.name)chunked_audio = reduce_noise_segmented(uploaded_file,  segment_duration, frame_rate)# 计算总的音频段数total_chunks = len(chunked_audio)if total_chunks>0:# 创建进度条progress_bar = st.progress(0)# 对每个音频段进行降噪并合并reduced_noise_chunks = []result_array = []for i, chunk in enumerate(chunked_audio):audio_array = chunk.get_array_of_samples()reduced_noise = reduce_noise(np.array(audio_array), chunk.frame_rate)reduced_chunk = AudioSegment(reduced_noise.tobytes(),frame_rate=chunk.frame_rate,sample_width=chunk.sample_width,channels=chunk.channels)reduced_noise_chunks.append(reduced_chunk)language=""if language_choice=='中文':language="CN"else:language="EN"path="第"+str(i+1)+"段音频.wav"reduced_chunk.export(path,format="wav")while os.path.exists(path):result = recognition(path, language)if result:st.write(f"第{i+1}段音频识别结果:" + result)result_array.append(result)break# 更新进度条的值progress = int((i + 1) / total_chunks * 100)progress_bar.progress(progress)st.write("识别的结果为:","".join(result_array))keywords = extract_keywords("".join(result_array))st.write("提取的关键词:", keywords)text=" ".join(keywords)wc = WordCloud(font_path="SimSun.ttf",collocations=False, width=800, height=400, margin=2, background_color='white').generate(text.lower())st.image(wc.to_array(), caption='词云')# 合并降噪后的音频段reduced_audio = reduced_noise_chunks[0]for i in range(1, len(reduced_noise_chunks)):reduced_audio += reduced_noise_chunks[i]# 导出处理后的音频文件reduced_audio.export(output_audio_path,format="wav")while os.path.exists(output_audio_path):# 提供处理后音频的下载链接st.markdown(get_base64_link(output_audio_path, '下载降噪音频'), unsafe_allow_html=True)    breakelse:st.warning("请上传文件")if __name__ == "__main__":main()

依赖

wenet @ git+https://github.com/wenet-e2e/wenet
streamlit
wordcloud
pydub
jieba
noisereduce
numpy==1.23.5

服务器部署

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/226692.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

循环冗余效验码的计算方法

循环冗余效验码的计算方法 G&#xff08;x&#xff09;&#xff1a; 在了解计算方法之前我们首先要明白G&#xff08;x&#xff09;表明的意思&#xff0c;这一步非常重要&#xff01; 例如&#xff0c;G&#xff08;x&#xff09; x^3 x^2 1 &#xff0c;该式子表明的编…

Redis实现日榜|直播间榜单|排行榜|Redis实现日榜01

前言 直播间贡献榜是一种常见的直播平台功能&#xff0c;用于展示观众在直播过程中的贡献情况。它可以根据观众的互动行为和贡献值进行排名&#xff0c;并实时更新&#xff0c;以鼓励观众积极参与直播活动。 在直播间贡献榜中&#xff0c;每个观众都有一个对应的贡献值&#…

【NI-RIO入门】理解Windows、Real Time与FPGA之间数据通信的原理

于NI kb摘录 1.概述 对于NI RIO系列设备&#xff08;CompactRIO、sbRIO、myRIO等&#xff09;进行编程时&#xff0c;需要注意有三个不同的组件。 人机界面 (HMI) 。有时称为“主机”&#xff0c;为用户提供图形用户界面&#xff08;GUI&#xff09;&#xff0c;用于监控系统…

阿里云数据库polardb怎么收费?

阿里云数据库PolarDB租用价格表&#xff0c;云数据库PolarDB MySQL版2核4GB&#xff08;通用&#xff09;、2个节点、60 GB存储空间55元5天&#xff0c;云数据库 PolarDB 分布式版标准版2核16G&#xff08;通用&#xff09;57.6元3天&#xff0c;阿里云百科aliyunbaike.com分享…

搭建flink集群 —— 筑梦之路

Apache Flink 是一个框架和分布式处理引擎&#xff0c; 用于在无边界和有边界数据流上进行有状态的计算。 Flink 能在所有常见集群环境中运行&#xff0c;并能以内存速度和任意规模进行计算。 Flink并没有依靠自身实现所有分布式系统需要解决的问题&#xff0c; 而是在已有集群…

基于 Vue3 和 WebSocket 实现的简单网页聊天应用

首先附上项目介绍,后面详细解释技术细节 1. chat-websocket 一个基于Vue3和WebSocket的简易网络聊天室项目&#xff0c;包括服务端和客户端部分。 项目地址 websocket-chat 下面是项目的主要组成部分和功能&#xff1a; 项目结构 chat-websocket/ |-- server/ # WebSocket 服…

蓝桥杯c/c++程序设计——冶炼金属

冶炼金属 问题描述 小蓝有一个神奇的炉子用于将普通金属 O 冶炼成为一种特殊金属 X。这个炉子有一个称作转换率的属性 V&#xff0c;V 是一个正整数&#xff0c;这意味着消耗 V 个普通金属 O 恰好可以冶炼出一个特殊金属 X&#xff0c;当普通金属 O 的数目不足 V 时&#xff0…

Linux习题1

解析&#xff1a;Tcsh是csh的增强版&#xff0c;并且完全兼容csh。它不但具有csh的全部功能&#xff0c;还具有命令行编辑、拼写校正、可编程字符集、历史记录、作业控制等功能。 AWK是一种优良的文本处理工具&#xff0c;Linux及Unix环境中现有的功能最强大的数据处理引擎之一…

C++ Qt开发:SqlRelationalTable关联表组件

Qt 是一个跨平台C图形界面开发库&#xff0c;利用Qt可以快速开发跨平台窗体应用程序&#xff0c;在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置&#xff0c;实现图形化开发极大的方便了开发效率&#xff0c;本章将重点介绍SqlRelationalTable关联表组件的常用方法及灵…

纯CSS实现马里奥效果,回忆一下童年吧

&#x1f4e2; 鸿蒙专栏&#xff1a;想学鸿蒙的&#xff0c;冲 &#x1f4e2; C语言专栏&#xff1a;想学C语言的&#xff0c;冲 &#x1f4e2; VUE专栏&#xff1a;想学VUE的&#xff0c;冲这里 &#x1f4e2; CSS专栏&#xff1a;想学CSS的&#xff0c;冲这里 &#x1f4…

【Filament】立方体贴图(6张图)

1 前言 本文通过一个立方体贴图的例子&#xff0c;讲解三维纹理贴图&#xff08;子网格贴图&#xff09;的应用&#xff0c;案例中使用 6 张不同的图片给立方体贴图&#xff0c;图片如下。 读者如果对 Filament 不太熟悉&#xff0c;请回顾以下内容。 Filament环境搭建绘制三角…

安装 PyQt5 保姆级教程

作者&#xff1a;billy 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 前言 博主之前做应用层开发用的一直是 Qt&#xff0c;这次尝试一下在 python 中使用 Pyqt5 模块来开发 UI 界面&#xff0c;这里做一些…

C语言rand函数,srand函数,time函数实现随机数,及猜数字小游戏

怀心之所爱&#xff0c;奔赴山河 前言 最近在复习c的知识&#xff0c;想起之前写过一个猜数字小游戏&#xff0c;所以今天就把自己关于随机数的使用经验分享一下&#xff0c;希望对大家有帮助。 一.rand函数 1.函数的声明如下 可以看到&#xff0c;返回值是int类型&#xff…

MCEWMDRMNDBootstrap.dll文件丢失,软件游戏无法启动,怎样下载修复

不少小伙伴反馈&#xff0c;在打开某些游戏或软件的时候&#xff0c;Windows会提示“MCEWMDRMNDBootstrap.dll文件丢失&#xff0c;软件无法启动”&#xff0c;不知道应该怎样办&#xff1f; 首先&#xff0c;我们先来了解“MCEWMDRMNDBootstrap.dll文件”是什么&#xff1f; …

Arduino stm32 USB CDC虚拟串口使用示例

Arduino stm32 USB CDC虚拟串口使用示例 &#x1f4cd;相关篇《STM32F401RCT6基于Arduino框架点灯程序》&#x1f516;本开发环境基于VSCode PIO&#x1f33f;验证芯片&#xff1a;STM32F401RC⌛USB CDC引脚&#xff1a; PA11、 PA12&#x1f527;platformio.ini配置信息&…

基于YOLOv8的遥感SAR舰船小目标识别

&#x1f4a1;&#x1f4a1;&#x1f4a1;本文摘要&#xff1a;基于YOLOv8的遥感SAR舰船小目标&#xff0c;阐述了整个数据制作和训练可视化过程 1.YOLOv8介绍 Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的…

最新AI绘画Midjourney绘画提示词Prompt教程

一、Midjourney绘画工具 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭…

Could not resolve com.github.CymChad:BaseRecyclerViewAdapterHelper:2.9.28.

1、首先进入阿里云maven仓库&#xff0c;在搜索栏输入无法下载的依赖名称&#xff0c;查询现有版本号&#xff0c;可以看到这里有2.9.34。 2、在build.gradle(Project)的buildscript闭包下替换为阿里云maven仓库&#xff1a; maven { url https://www.jitpack.io } maven { u…

3D游戏角色建模纹理贴图处理

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 在本文中&#xff0c;我们将介绍 3D 纹理的基础知识&#xff0c;并讨…

算法设计与分析实验报告-贪心算法

校课程的简单实验报告。 算法设计与分析实验报告-递归与分治策略 算法设计与分析实验报告-动态规划算法 算法设计与分析实验报告-贪心算法 dijkstra迪杰斯特拉算法&#xff08;邻接表法&#xff09; 算法设计与分析实验报告-回溯法 算法设计与分析实验报告-分支限界法 …