智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.袋獾算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用袋獾算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.袋獾算法

袋獾算法原理请参考:https://blog.csdn.net/u011835903/article/details/130543093
袋獾算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

袋獾算法参数如下:

%% 设定袋獾优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明袋獾算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/226727.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【UE5.1】程序化生成Nanite植被

目录 效果 步骤 一、下载Gaea软件和树林资产 二、使用Gaea生成贴图 三、 生成地形 四、生成草地 五、生成树林 六、生成湖泊 七、其它功能介绍 7.1 调整树林生成的面积 7.2 让植物随风飘动 7.3 玩家和植物互动 7.4 雪中树林 7.5 环境音效 效果 步骤 一、下载Ga…

HBase 集群搭建

文章目录 安装前准备兼容性官方网址 集群搭建搭建 Hadoop 集群搭建 Zookeeper 集群解压缩安装配置文件高可用配置分发 HBase 文件 服务的启停启动顺序停止顺序 验证进程查看 Web 端页面 安装前准备 兼容性 1)与 Zookeeper 的兼容性问题,越新越好&#…

信息泄露总结

文章目录 一、备份文件下载1.1 网站源码1.2 bak文件泄露1.3 vim缓存1.4 .DS_Store 二、Git泄露2.1 git知识点2.1 log2.2 stash 三、SVN泄露3.1 SVN简介3.2 SVN的文件3.3 SVN利用 四、Hg泄露 一、备份文件下载 1.1 网站源码 常见的网站源码备份文件后缀: tartar.gz…

非阻塞 IO(NIO)

文章目录 非阻塞 IO(NIO)模型驱动程序应用程序模块使用 非阻塞 IO(NIO) 上一节中 https://blog.csdn.net/tyustli/article/details/135140523,使用等待队列头实现了阻塞 IO 程序使用时,阻塞 IO 和非阻塞 IO 的区别在于文件打开的时候是否使用了 O_NONB…

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第五节 引用类型复制问题及用克隆接口ICloneable修复

深入浅出图解C#堆与栈 C# Heaping VS Stacking 第五节 引用类型复制问题及用克隆接口ICloneable修复 [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第一节 理解堆与栈](https://mp.csdn.net/mdeditor/101021023)[深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第二节…

spdlog中的异步日志方案

日志方案 同步日志方案:立即输出日志记录的方案才能继续执行其他任务。 异步日志方案:先抛出一个日志记录的任务到某个地方,不马上执行打印也不影响往下执行其他任务。 二者关键区别是产生日志记录并调用相关的日志任务接口之后&#xff0…

【Kafka】Kafka客户端认证失败:Cluster authorization failed.

背景 kafka客户端是公司内部基于spring-kafka封装的spring-boot版本:3.xspring-kafka版本:2.1.11.RELEASE集群认证方式:SASL_PLAINTEXT/SCRAM-SHA-512经过多年的经验,以及实际验证,配置是没问题的,但是业务…

【JVM】虚拟机的组成+字节码文件组成+类的生命周期

什么是JVM? JVM 本质上是一个运行在计算机上的程序,他的职责是运行Java字节码文件。 JVM的功能 1.解释和运行:对字节码文件中的指令实时的解释成机器码让计算机执行。 2.内存管理:自动为对象、方法等分配内存,自动…

平升电子水库监管平台SQL注入漏洞复现

0x01 产品简介 唐山平升电子水库监管平台通过实时监测、数据分析、预警系统和远程控制等功能,为水库管理部门提供了一种全面、高效的数字化解决方案,帮助他们更好地管理和监控水库,确保水库的安全运行。 0x02 漏洞概述 唐山平升电子水库监…

sqlite3 c++ VS编译生成静态库

官网 https://www.sqlite.org/download.html 下载sqlite-amalgamation和x86版本下载sqlite-dll-win32-x86、x64位版本sqlite-dll-win64-x64 解压 SQLITE-AMALGAMATION包含 shell.csqlite3.csqlite3.hsqlite3ext.hsqlite-dll-win32-x86包含 sqlite3.def sqlite3.dll建立一个空…

Prometheus-JVM

一. JVM监控 通过 jmx_exporter 启动端口来实现JVM的监控 Github Kubernetes Deployment Java 服务,修改 wget https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.19.0/jmx_prometheus_javaagent-0.19.0.jar# 编写配置文件&#xff0…

limit查询报错问题

分页时候 limit 后面的公式是 (pageNum-1)*pageSize,pageSize 但是在数据库查询时候 当然在.XML中也不能像下面这么写,如果要计算 在业务层或者控制层计算好再传值进来

c++ / day01

1. 整理思维导图 2. 定义自己的命名空间myspace&#xff0c;并在myspace中定义一个字符串&#xff0c;实现求字符串大小的函数。 代码 #include <iostream>using namespace std;namespace myns {unsigned long long strlen(string s){return s.length();}}int main() {…

Chatgpt如何共享可以防止封号!

ChatGPT 是一个基于 GPT-3.5/GPT-4 模型的对话系统&#xff0c;它主要用于处理自然语言对话。通过训练模型来模拟人类的语言行为&#xff0c;ChatGPT 可以通过文本交流与用户互动。每个新版本的 GPT 通常都会在模型规模、性能和其他方面有一些改进。在目前免费版GPT-3.5 中&…

CNVD原创漏洞审核和处理流程

一、CNVD原创漏洞审核归档和发布主流程 &#xff08;一&#xff09;审核和归档流程 审核流程分为一级、二级、三级审核&#xff0c;其中一级审核主要对提交的漏洞信息完整性进行审核&#xff0c;漏洞符合可验证&#xff08;通用型漏洞有验证代码信息或多个互联网实例、事件型…

Tekton

一. 概念 Tekton 官网 Github Tekton 是一种用于构建 CI/CD 管道的云原生解决方案&#xff0c;它由提供构建块的 Tekton Pipelines&#xff0c;Tekton 作为 Kubernetes 集群上的扩展安装和运行&#xff0c;包含一组 Kubernetes 自定义资源&#xff0c;这些资源定义了您可以为…

Ubuntu 20.04使用Livox Mid-360

参考文章&#xff1a; Ubuntu 20.04使用Livox mid 360 测试 FAST_LIO-CSDN博客 一&#xff1a;Livox mid 360驱动安装与测试 前言&#xff1a; Livox mid360需要使用Livox-SDK2&#xff0c;而非Livox-SDK&#xff0c;以及对应的livox_ros_driver2 。 1. 安装Livox-SDK2 参…

java SSM课程平台系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM课程平台系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S…

RHCE9学习指南 第11章 网络配置

11.1 网络基础知识 一台主机需要配置必要的网络信息&#xff0c;才可以连接到互联网。需要的配置网络信息包括IP&#xff0c;子网掩码&#xff0c;网关和DNS。 11.1.1 IP地址 在计算机中对IP的标记使用的是32bit的二进制&#xff0c;例如&#xff0c; 11000000 10101000 00…

Linux上管理不同版本的 JDK

当在 Linux 上管理不同版本的 JDK 时&#xff0c;使用 yum 和 dnf 可以方便地安装和切换不同的 JDK 版本。本文将介绍如何通过这两个包管理工具安装 JDK 1.8 和 JDK 11&#xff0c;并利用软连接动态关联这些版本。 安装 JDK 1.8 和 JDK 11 使用 yum 安装 JDK 1.8 打开终端并…