基于轻量级GhostNet模型开发构建生活场景下生活垃圾图像识别系统

轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:

《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》

《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》

《基于轻量级卷积神经网络模型实践Fruits360果蔬识别——自主构建CNN模型、轻量化改造设计lenet、alexnet、vgg16、vgg19和mobilenet共六种CNN模型实验对比分析》

《探索轻量级模型性能上限,基于GhostNet模型开发构建多商品细粒度图像识别系统》

《基于轻量级神经网络GhostNet开发构建的200种鸟类细粒度识别分析系统》

《基于MobileNet的轻量级卷积神经网络实现玉米螟虫不同阶段识别分析》

《基于轻量级模型GHoshNet开发构建眼球眼疾识别分析系统,构建全方位多层次参数对比分析实验》

《python基于轻量级卷积神经网络模型ShuffleNetv2开发构建辣椒病虫害图像识别系统》

《基于轻量级神经网络GhostNet开发构建光伏太阳能电池缺陷图像识别分析系统》

《python开发构建轻量级卷积神经网络模型实现手写甲骨文识别系统》

《基于轻量级GhostNet模型开发构建工业生产制造场景下滚珠丝杠传动表面缺陷图像识别系统》

本文的核心思想是像基于GhostNet来开发构建生活场景下的生活垃圾图像识别系统,首先看下实例效果:

GhostNet 是一种轻量级卷积神经网络,是专门为移动设备上的应用而设计的。其主要构件是 Ghost 模块,一种新颖的即插即用模块。Ghost 模块设计的初衷是使用更少的参数来生成更多特征图 (generate more features by using fewer parameters)。

官方论文地址在这里,如下所示:

官方也开源了项目,地址在这里,如下所示:

可以详细阅读官方的代码实例即可,之后可以基于自己的数据集来开发构建模型即可。

这里给出GhostNet的核心实现部分,如下所示:

class GhostNet(nn.Module):def __init__(self, cfgs, num_classes=1000, width_mult=1.0):super(GhostNet, self).__init__()self.cfgs = cfgsoutput_channel = _make_divisible(16 * width_mult, 4)layers = [nn.Sequential(nn.Conv2d(3, output_channel, 3, 2, 1, bias=False),nn.BatchNorm2d(output_channel),nn.ReLU(inplace=True),)]input_channel = output_channelblock = GhostBottleneckfor k, exp_size, c, use_se, s in self.cfgs:output_channel = _make_divisible(c * width_mult, 4)hidden_channel = _make_divisible(exp_size * width_mult, 4)layers.append(block(input_channel, hidden_channel, output_channel, k, s, use_se))input_channel = output_channelself.features = nn.Sequential(*layers)output_channel = _make_divisible(exp_size * width_mult, 4)self.squeeze = nn.Sequential(nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False),nn.BatchNorm2d(output_channel),nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)),)input_channel = output_channeloutput_channel = 1280self.classifier = nn.Sequential(nn.Linear(input_channel, output_channel, bias=False),nn.BatchNorm1d(output_channel),nn.ReLU(inplace=True),nn.Dropout(0.2),nn.Linear(output_channel, num_classes),)self._initialize_weights()def forward(self, x, need_fea=False):if need_fea:features, features_fc = self.forward_features(x, need_fea)x = self.classifier(features_fc)return features, features_fc, xelse:x = self.forward_features(x)x = self.classifier(x)return xdef forward_features(self, x, need_fea=False):if need_fea:input_size = x.size(2)scale = [4, 8, 16, 32]features = [None, None, None, None]for idx, layer in enumerate(self.features):x = layer(x)if input_size // x.size(2) in scale:features[scale.index(input_size // x.size(2))] = xx = self.squeeze(x)return features, x.view(x.size(0), -1)else:x = self.features(x)x = self.squeeze(x)return x.view(x.size(0), -1)def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")elif isinstance(m, nn.BatchNorm2d):m.weight.data.fill_(1)m.bias.data.zero_()def cam_layer(self):return self.features[-1]

简单看下数据集情况:

数据集分布可视化如下所示:

基于tsne算法实现了分布的可视化,可以清楚地看到:两类数据区分度还是很明显的。

整体模型训练识别的难度也是相对较低的,接下来看下loss走势:

acc曲线:

可以看到:模型的精度非常高了。

基于常用的数据增强算法来实现对原始图像数据的增强处理效果实例如下所示:

混淆矩阵如下:

感兴趣的话也都可以动手实践下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/227572.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java JVM】Java 实例对象的访问定位

Java 程序会通过栈上的 reference 数据来操作堆上的具体对象。 但是 reference 类型在《Java虚拟机规范》里面只规定了它是一个指向对象的引用, 并没有定义这个引用应该通过什么方式去定位, 访问到堆中对象的具体位置, 所以对象访问方式也是由虚拟机实现而定的,主流…

深入探索小红书笔记详情API:解锁内容创新的无尽潜力

一、引言 在当今信息爆炸的时代,内容创新已经成为品牌和个人脱颖而出的关键。小红书,作为全球最大的消费类口碑库之一,每天产生大量的用户生成内容。而小红书笔记详情API,作为一个强大的工具,能够为内容创作者提供深入…

UG装配-添加组件

添加组件命令位置在如下位置:菜单-装配-组件-添加组件 添加组件命令位置在如下位置:菜单-装配-组件-添加组件

Java关键字(1)

Java中的关键字是指被编程语言保留用于特定用途的单词。这些关键字不能用作变量名或标识符。以下是Java中的一些关键字: public:表示公共的,可以被任何类访问。 private:表示私有的,只能被定义该关键字的类访问。 cl…

060:vue中markdown编辑器mavon-editor的应用示例

第060个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…

(学习打卡1)重学Java设计模式之设计模式介绍

前言:听说有本很牛的关于Java设计模式的书——重学Java设计模式,然后买了(*^▽^*) 开始跟着小傅哥学Java设计模式吧,本文主要记录笔者的学习笔记和心得。 打卡!打卡! 设计模式介绍 一、设计模式是什么? …

2023年03月17日_微软和谷歌办公AI的感慨

2023年3月17日 最近这个科技圈的消息 有点爆炸的让人应接不暇了 各种大公司简直就是神仙打架 你从来没有见过这么密集的 这么高频的产品发布 昨天微软是发布了Office 365 Copilot 在里边提供了大量的AI的功能 然后谷歌呢也发布了这个Google Workspace AI 也是跟365 Cop…

据报道,微软的下一代 Surface 笔记本电脑将是其首款真正的“人工智能 PC”

明年,微软计划推出 Surface Laptop 6和 Surface Pro 10,这两款设备将提供 Arm 和 Intel 两种处理器选项。不愿意透露姓名的不透露姓名人士透露,这些新设备将引入先进的人工智能功能,包括配备下一代神经处理单元 (NPU)。据悉&#…

uniapp打包Android、Ios、微信小程序

首先我们需要在我们的代码中,把我们所要用到的配置信息配置好,在检查一下我们测试的内容是否有打开(取消注释),在检查一下我们的版本信息是否正确,查看一下接口ip是否是正式线 这里的配置信息一定要配置好…

SpringBoot整合Canal

一 linux docker compose版本 1.第一步:基础环境 (1)第1步:安装jak、maven、git、nodejs、npm yum install maven mvn -v 安装maven时会帮安装jdkyum install git git --version 2.27.0yum in…

【Echarts】使用echarts和echarts-wordcloud生成词云图

一、下载echarts和echarts-wordcloud 地址:https://download.csdn.net/download/qq_25285531/88663006 可直接下载放在项目中使用 二、词云数据 词云数据是对象的格式,可以从后端获取,这里以下面数据为例 $list3 array(array(name >…

【C语言】分支与循环语句

什么是语句? C语句可分为以下五类: 表达式语句函数调用语句控制语句 (本篇重点介绍)复合语句空语句 控制语句用于控制程序的执行流程,以实现程序的各种结构方式。C语言支持三种结构: 顺序结构选择结构循…

【JavaScript】new原理解析

✨ 专栏介绍 在现代Web开发中,JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性,还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言,JavaScript具有广泛的应用场景&#x…

汇编语言指令系列

目录 (一)七大寻址方式 ① 立即寻址: ② 寄存器寻址: ③ 直接寻址: ④ 寄存器间接寻址: ⑤ 变指寻址: ⑥ 相对寻址: ⑦ 位寻址: (二)重要…

分类模型评估方法

1.数据集划分 1.1 为什么要划分数据集? 思考:我们有以下场景: 将所有的数据都作为训练数据,训练出一个模型直接上线预测 每当得到一个新的数据,则计算新数据到训练数据的距离,预测得到新数据的类别 存在问题&…

冒泡排序--------(C每日一题)

冒泡排序&#xff1a; 每次将相邻的两个数比较,将小的调到前头--升序 冒泡排序一个结论&#xff1a; n个数要进行n-1轮比较&#xff0c;第j轮要进行n-j次两两比较 循环体代码&#xff1a; int main() {int i, j,n,a[10],t;//n是几个数比较for(j1;j<n-1;j)//控制轮次for…

Bluetooth Mesh 入门学习干货,参考Nordic资料(更新中)

蓝牙网状网络&#xff08;Bluetooth mesh&#xff09;概念 概述 蓝牙Mesh Profile | Bluetooth Technology Website规范&#xff08;Mesh v1.1 后改名Mesh ProtocolMesh Protocol | Bluetooth Technology WebsiteMesh Protocol&#xff09;是由蓝牙技术联盟(Bluetooth SIG)开…

力扣刷题总结 栈与队列

&#x1f525;博客主页&#xff1a; A_SHOWY&#x1f3a5;系列专栏&#xff1a;力扣刷题总结录 数据结构 云计算 数字图像处理 力扣每日一题_ 一、栈和队列的基础知识 队列是先进先出&#xff0c;栈是先进后出。同时二者都是容器适配器而不是容器。 二、题目实战 232.用栈…

Unity AssetBundle学习笔记

目录 基础介绍 动态资源加载 更新和添加内容 打包策略 资源分组 频繁更新的资源 资源压缩 Unload&#xff08;true&#xff09;和Unload&#xff08;false&#xff09; Unload(false) Unload(true) 确定何时卸载 引用计数 场景和状态管理 资源使用频率 内存预算…

基于CNN神经网络的手写字符识别实验报告

作业要求 具体实验内容根据实际情况自拟&#xff0c;可以是传统的BP神经网络&#xff0c;Hopfield神经网络&#xff0c;也可以是深度学习相关内容。 数据集自选&#xff0c;可以是自建数据集&#xff0c;或MNIST&#xff0c;CIFAR10等公开数据集。 实验报告内容包括但不限于&am…