OpenCV-Python(21):轮廓特征及周长、面积凸包检测和形状近似

2. 轮廓特征

        轮廓特征是指由轮廓形状和结构衍生出来的一些特征参数。这些特征参数可以用于图像识别、目标检测和形状分析等应用中。常见的轮廓特征包括:

  1. 面积:轮廓所包围的区域的面积。
  2. 周长:轮廓的周长,即轮廓线的长度。
  3. 弧长:轮廓线的弧长,即轮廓的长度。
  4. 轮廓矩:轮廓的几何矩,用于描述轮廓的形状。
  5. 轮廓重心:轮廓所包围区域的重心坐标。
  6. 外接矩形:能够完全包围轮廓的矩形。
  7. 最小外接矩形:能够紧密包围轮廓的矩形,且角度与轮廓的方向一致。
  8. 外接圆:能够完全包围轮廓的圆。
  9. 最小外接圆:能够紧密包围轮廓的圆。
  10. 椭圆拟合:能够最好地拟合轮廓的椭圆。
  11. 凸包:能够包围轮廓的最小凸多边形。
  12. 轮廓层级:描述轮廓的嵌套关系。

这些轮廓特征可以通过OpenCV库的cv2.contourArea()cv2.arcLength()cv2.moments()cv2.boundingRect()cv2.minAreaRect()cv2.minEnclosingCircle()cv2.fitEllipse()cv2.convexHull()等函数来计算和获取,下面主要介绍一些常用的特征。

2.1 目标

  •  查找轮廓的不同特征,例如面积、周长、重心、边界框等。

  •  学习和掌握轮廓相关函数

2.2 矩特征

        图像矩是一种描述图像几何特征的数学工具,用于描述图像的形状、位置和分布等信息,以帮助我们计算图像的质心、面积等。图像矩可以用于图像识别、目标检测、形状分析等应用中。图像矩的计算是基于图像像素的灰度值进行的,常见的图像矩包括原点矩、中心矩和归一化矩。使用OpenCV库的cv2.moments()函数可以计算图像的矩。该函数接受一个二值化的图像作为输入,并返回一个包含各种矩的字典。可以通过字典的键来获取不同的矩。以下是一个示例代码,演示如何计算图像的矩:

import cv2# 读取图像
image = cv2.imread("image.jpg")# 灰度化
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 计算矩
moments = cv2.moments(thresh)# 获取原点矩
m00 = moments["m00"]
m10 = moments["m10"]
m01 = moments["m01"]# 获取中心矩
cx = int(m10 / m00)
cy = int(m01 / m00)# 获取归一化矩
nu20 = moments["nu20"]
nu02 = moments["nu02"]
nu11 = moments["nu11"]# 打印矩的值
print("m00:", m00)
print("m10:", m10)
print("m01:", m01)
print("cx:", cx)
print("cy:", cy)
print("nu20:", nu20)
print("nu02:", nu02)
print("nu11:", nu11)

上述代码中,首先读取了一张图像,并对其进行了灰度化和二值化处理。然后使用cv2.moments()函数计算了图像的矩。通过字典的键可以获取不同的矩的值。在示例代码中,获取了原点矩的值(m00、m10和m01)、中心矩的值(cx和cy)以及归一化矩的值(nu20、nu02和nu11)。最后打印了这些矩的值。需要注意的是,图像矩对图像的形状和位置非常敏感,因此在计算图像矩之前需要对图像进行预处理,如灰度化、二值化等。

注意:根据这些矩的值,我们可以计算出对象的重心,

cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])

2.3 轮廓面积

        轮廓面积是指闭合轮廓所包围的区域的面积,可以用来描述对象的大小。在OpenCV中,可以使用cv2.contourArea()函数计算轮廓的面积,也可以使用0阶矩(M['m00'])计算得到。

area = cv2.contourArea(cnt)

cv2.contourArea()函数接受一个轮廓作为输入,并返回轮廓的面积。该函数的语法如下:

area = cv2.contourArea(contour)

其中,contour是一个包含轮廓点的数组。可以通过cv2.findContours()函数找到图像中的轮廓,并提取其中的某个轮廓来计算面积。以下是一个示例代码,演示如何计算轮廓的面积:

import cv2# 读取图像
image = cv2.imread("image.jpg")# 灰度化
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 查找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 遍历轮廓
for contour in contours:# 计算轮廓面积area = cv2.contourArea(contour)# 打印轮廓面积print("Contour area:", area)

在上述代码中,首先读取了一张图像,并对其进行了灰度化和二值化处理。然后使用cv2.findContours()函数找到图像中的轮廓。返回的contours是一个包含所有轮廓的列表。接下来,遍历轮廓列表,并使用cv2.contourArea()函数计算每个轮廓的面积。最后打印了每个轮廓的面积。需要注意的是,cv2.contourArea()函数计算的是轮廓的面积,而不是对象的实际面积。因此,在使用该函数之前,需要对图像进行预处理,如灰度化、二值化等,以确保轮廓能够正确识别。

2.4 轮廓周长

        轮廓周长是指闭合轮廓的长度,可以用来描述对象的形状。在OpenCV中,可以使用cv2.arcLength()函数计算轮廓的周长。cv2.arcLength()函数接受一个轮廓作为输入,并返回轮廓的周长。该函数的语法如下:

perimeter = cv2.arcLength(contour, closed)

其中,contour是一个包含轮廓点的数组,closed是一个布尔值,指示轮廓是否是闭合的。如果轮廓是闭合的,则closedTrue;如果轮廓是开放的,则closedFalse。以下是一个示例代码,演示如何计算轮廓的周长:

import cv2# 读取图像
image = cv2.imread("image.jpg")# 灰度化
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 查找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 遍历轮廓
for contour in contours:# 计算轮廓周长perimeter = cv2.arcLength(contour, True)# 打印轮廓周长print("Contour perimeter:", perimeter)

在上述代码中,首先读取了一张图像,并对其进行了灰度化和二值化处理。然后使用cv2.findContours()函数找到图像中的轮廓。返回的contours是一个包含所有轮廓的列表。接下来,遍历轮廓列表,并使用cv2.arcLength()函数计算每个轮廓的周长。最后打印了每个轮廓的周长。需要注意的是,cv2.arcLength()函数计算的是轮廓的周长,而不是对象的周长。因此,在使用该函数之前,需要对图像进行预处理,如灰度化、二值化等,以确保轮廓能够正确识别。

2.5 轮廓近似

        在OpenCV中,可以使用cv2.approxPolyDP()函数对轮廓进行近似处理。轮廓近似可以将复杂的轮廓形状简化为更简单的几何形状,如直线或曲线。cv2.approxPolyDP()函数接受一个轮廓作为输入,并返回一个近似的轮廓。该函数的语法如下:

approx = cv2.approxPolyDP(curve, epsilon, closed)

其中,curve是一个包含轮廓点的数组,epsilon是指定近似精度的参数,closed是一个布尔值,指示轮廓是否是闭合的。如果轮廓是闭合的,则closedTrue;如果轮廓是开放的,则closedFalse。将轮廓形状近似到另外一种由更少点组成的轮廓形状,新轮廓的点的数目由我们设定的准确度来决定。实现这一功能主要使用的是Douglas-Peucker算法(你可以到维基百科获得更多此算法的细节)。为了帮助理解,假设我们需要在一幅图像中查找一个矩形,但是由于图像的种种原因,我们不能得到一个完美的矩形,而是一个(坏形状),如下图所示:

现在就可以使用这个函数来近似这个形状了。这个函数的第二个参数叫epsilon,它是从原始轮廓到近似轮廓的最大距离。它是一个准确度参数。选择一个好的epsilon 对于得到满意结果非常重要。

epsilon = 0.1*cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt,epsilon,True)

下面第二幅图中的绿线是当epsilon = 10% 时得到近似轮廓,第三幅图是当epsilon = 1% 时得到的近似轮廓。第三个参数设定弧线是否闭合。

以下是一个示例代码,演示如何对轮廓进行近似处理:

import cv2# 读取图像
image = cv2.imread("image.jpg")# 灰度化
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 查找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 遍历轮廓
for contour in contours:# 近似轮廓epsilon = 0.01 * cv2.arcLength(contour, True)approx = cv2.approxPolyDP(contour, epsilon, True)# 绘制近似轮廓cv2.drawContours(image, [approx], 0, (0, 255, 0), 2)

在上述代码中,首先读取了一张图像,并对其进行了灰度化和二值化处理。然后使用cv2.findContours()函数找到图像中的轮廓。返回的contours是一个包含所有轮廓的列表。接下来,遍历轮廓列表,并使用cv2.arcLength()函数计算每个轮廓的周长。然后根据周长计算一个近似精度epsilon,并使用cv2.approxPolyDP()函数对轮廓近似处理。最后使用cv2.drawContours()函数绘制近似轮廓。需要注意的是,轮廓近似处理是一种对轮廓进行简化的方法,可以减少轮廓点的数量,从而降低计算的复杂性。但近似精度epsilon的选择需要根据具体情况进行调整,过大的epsilon会导致近似结果不准确,而过小的epsilon会导致近似结果过于复杂。因此,在使用cv2.approxPolyDP()函数进行轮廓近似处理时,需要根据实际情况选择合适的epsilon值。

2.6 凸包

        在计算机视觉中,凸包(Convex Hull)是指一个包围一组点的最小凸多边形。凸多边形是一个所有内角均小于180度的多边形。凸包与轮廓近似相似,但不同,然有些情况下它们给出的结果是一样的。OpenCV中提供了cv2.convexHull()函数来计算给定点集的凸包,同时检测一个曲线是否具有凸性缺陷并能纠正缺陷。一般来说,凸性曲线总是凸出来的或者至少是平的。如果有地方凹下去了,就叫做凸性缺陷。例如下图中的手。红色曲线显示了手的凸包,凸性缺陷被双箭头标出来了。


关该cv2.convexHull()函数的语法如下:

hull = cv2.convexHull(points, clockwise, returnPoints)

其中,points是一个包含点集的数组,clockwise是一个布尔值,用于指定凸包的顺序,如果为True,则返回的凸包按顺时针方向排序;如果为False,则返回的凸包按逆时针方向排序;returnPoints是一个布尔值,用于指定返回的凸包是点的坐标还是索引,默认为True,表示返回点的坐标。

要获得上图的凸包,下面的命令就够了:

hull = cv2.convexHull(cnt)

但是如果你想获得凸性缺陷,需要把returnPoints 设置为False。以上面的矩形为例,首先我们找到他的轮廓cnt。现在我把returnPoints 设置为True 查找凸包,我得到下列值:

[[[234 202]], [[ 51 202]], [[ 51 79]], [[234 79]]],其实就是矩形的四个角点。现在把returnPoints 设置为False,我得到的结果是[[129],[ 67],[ 0],[142]],他们是轮廓点的索引。例如cnt[129] = [[234, 202]]这与前面我们得到结果的第一个值是一样的。

以下是一个示例代码,演示如何使用cv2.convexHull()函数计算凸包:

import cv2
import numpy as np# 创建一组点
points = np.array([[10, 10], [10, 100], [100, 10], [100, 100], [50, 50]])# 计算凸包
hull = cv2.convexHull(points)# 绘制凸包
image = np.zeros((200, 200, 3), dtype=np.uint8)
cv2.polylines(image, [hull], True, (0, 255, 0), 2)# 显示图像
cv2.imshow("Convex Hull", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上述代码中,首先创建了一个包含5个点的数组points。然后使用cv2.convexHull()函数计算凸包,并将结果保存在hull中。接下来,创建一个空白图像image,并使用cv2.polylines()函数绘制凸包。最后,显示图像。

需要注意的是,cv2.convexHull()函数返回的凸包是一个包含点的数组,可以通过cv2.polylines()函数绘制凸包。另外,可以使用cv2.isContourConvex()函数检查一个轮廓是否是凸的。如果返回True,则表示轮廓是凸的;如果返回False,则表示轮廓是非凸的。凸包在计算机视觉中有广泛的应用,如图像分割、形状匹配等。凸包可以帮助我们简化复杂的形状,并提取出形状的关键特征。

2.7 凸性检测

        函数cv2.isContourConvex() 可以可以用来检测一个曲线是不是凸的。它只能返回True 或False。没什么大不了的。

k = cv2.isContourConvex(cnt)

2.8 边界矩形

        通常有两类边界矩形:直边界矩形、旋转边界矩形

直边界矩形 

        一个直矩形(就是没有旋转的矩形)。它不会考虑对象是否旋转。所以直边界矩形的面积不是最小的。可以使用函数cv2.boundingRect() 查找得到。(x,y)为矩形左上角的坐标,(w,h)是矩形的宽和高。

x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
旋转边界矩形

        这个边界矩形是积最小的,因为它考虑了对象的旋转。用到的函数为cv2.minAreaRect()。返回的是一个Box2D 结构,其中包含矩形左上角角点的坐标(x,y),矩形的宽和高(w,h)以及旋转角度。但是要绘制这个矩形需要矩形的4 个顶点,可以通过函数cv2.boxPoints() 获得。

x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)

把这两中边界矩形显示在下图中,其中绿色的为直矩形,红的为旋转矩形。

2.9 最小外接圆

        函数cv2.minEnclosingCircle() 可以帮我们找到一个对象的外接圆。它是所有能够包括对象的圆中面积最小的一个。

(x,y),radius = cv2.minEnclosingCircle(cnt)
center = (int(x),int(y))
radius = int(radius)
img = cv2.circle(img,center,radius,(0,255,0),2)

2.10 椭圆拟合

        使用的函数为cv2.ellipse(),返回值其实就是旋转边界矩形的内切圆。

ellipse = cv2.fitEllipse(cnt)
im = cv2.ellipse(im,ellipse,(0,255,0),2)

2.11 直线拟合

        我们可以根据一组点拟合出一条直线,同样我们也可以为图像中的白色点拟合出一条直线。

rows,cols = img.shape[:2]
[vx,vy,x,y] = cv2.fitLine(cnt, cv2.DIST_L2,0,0.01,0.01)
lefty = int((-x*vy/vx) + y)
righty = int(((cols-x)*vy/vx)+y)
img = cv2.line(img,(cols-1,righty),(0,lefty),(0,255,0),2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/228768.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker自建文件快递柜系统

Docker自建文件快递柜系统。 软件特色: 轻量简洁:FastapiSqlite3Vue2ElementUI 轻松上传:复制粘贴,拖拽选择 多种类型:文本,文件 防止爆破:错误次数限制 防止滥用:IP限制上传次数…

GO语言基础笔记(七):网络编程

目录 Go语言网络协议基础 协议 实现 跨平台网络抽象 简单代码展示 服务端 客户端 服务端客户端通信实战 Go Linux服务端 Go Linux客户端 Windows C 客户端 总结 Go语言网络协议基础 在 Go 语言中,net/http 包提供了强大的工具来创建 HTTP 服务器。…

新产品推广选品牌外包广州迅腾文化传播多渠道传播能力

在当今激烈的市场竞争中,新产品推广已成为企业发展的关键。选择具备多渠道传播能力的品牌外包服务提供商,有助于快速提升品牌知名度和市场占有率。作为行业领先者,迅腾文化凭借卓越的多渠道传播能力,成为企业新产品推广的理想合作…

我的512天创作者纪念日总结:高效、高现

文章目录 512天创作者纪念日:2023年的12月31日CSDN的512天消息提醒第一篇文章,最后一篇文章总计847篇文章,每月发文分布512天,各专栏文章统计512天,互动总成绩 512天创作者纪念日:2023年的12月31日 2023年…

微服务(1)

目录 1.什么是微服务?谈谈你对微服务的理解? 2.什么是Spring Cloud? 3.Springcloud中的组件有哪些? 3.具体说说SpringCloud主要项目? 5.SpringCloud项目部署架构? 1.什么是微服务?谈谈你对微…

前端开发新趋势:Web3、区块链与虚拟现实

文章目录 Web3:下一代互联网区块链技术去中心化应用程序(DApps) 区块链:重塑数字世界数字钱包NFT(非同质化代币) 虚拟现实:沉浸式体验WebVR和WebXR三维图形 新挑战与机会性能与复杂性安全性创新…

【网络面试(2)】DNS原理-域名和IP地址的查询转换

从上一篇博客我们得知浏览器是如何生成了HTTP消息了,但是浏览器作为应用程序,是不具备向网络中发送请求的能力,而是需要委托给操作系统的内核协议栈来发送请求。在委托协议栈之前,浏览器还要做的一件事情就是将域名转换为IP地址。…

lambda表达式和包装器

正文开始前给大家推荐个网站,前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 我们在使用库里的排序算法时如果排序的是自定义类型或者库里默认的排序不能满足我们则需求&…

Apache DolphinScheduler 3.1.9 版本发布:提升系统的稳定性和性能

🚀我们很高兴宣布,Apache DolphinScheduler 的最新版本 3.1.9 已正式发布!此版本在 3.1.8 的基础上进行了关键的 bug 修复和文档更新,共计修复了 14 个 bug 和改进了 3 个文档。 主要更新亮点 本次更新重点解决了以下几个关键问题…

磁盘阵列raid

一、服务器硬件 cpu 、 主板 、内存、硬盘、网卡、电源、raid卡、风扇、远程管理卡 二、硬盘尺寸 目前生产环境中主流的两种类型硬盘 3.5寸 和 2.5寸 硬盘 2.5寸硬盘可以通过使用硬盘托架后适用于3.5寸硬盘的服务器,但是3.5寸没法转换成2.5寸 三、服务器常见故…

[每周一更]-(第43期):Golang版本的升级历程

从1.13接触go语言开始更新我们公司内第一个Go项目,直至现在go版本已经发展到1.20(20230428),我们从go发版开始认识go语言,有利于我们更深入 了解这门语言,洞悉一些深层方式,加深我们学习的动力&…

看懂基本的电路原理图(入门)

文章目录 前言一、二极管二、电容三、接地一般符号四、晶体振荡器五、各种符号的含义六、查看原理图的顺序总结 前言 电子入门,怎么看原理图,各个图标都代表什么含义,今天好好来汇总一下。 就比如这个电路原理图来说,各个符号都…

JDBC->SpringJDBC->Mybatis封装JDBC

一、JDBC介绍 Java数据库连接,(Java Database Connectivity,简称JDBC)是Java语言中用来规范客户端程序如何来访问数据库的应用程序接口,提供了诸如查询和更新数据库中数据的方法。JDBC也是Sun Microsystems的商标。我们…

03 团队研究进一步详细介绍

一、印第安纳大学邢璐祎课题组 【团队网站】 https://www.xing-luyi.com/ 【团队介绍】 研究以形式化方法为特色,并保证系统中的安全性和隐私合规性,特别是物联网、云、移动和软件供应链。 【团队成果汇总】 物联网系统:[Oakland24][Se…

合伙企业法关于合伙企业的要求

合伙协议可以载明合伙企业的经营期限和合伙人争议的解决方式。 合伙协议经全体合伙人签名、盖章后生效。合伙人依照合伙协议享有权利,承担责任。 经全体合伙人协商一致,可以修改或者补充合伙协议。 申请合伙企业设立登记,应当向企业登记机关提…

TecoGAN视频超分辨率算法

1. 摘要 对抗训练在单图像超分辨率任务中非常成功,因为它可以获得逼真、高度细致的输出结果。因此,当前最优的视频超分辨率方法仍然支持较简单的范数(如 L2)作为对抗损失函数。直接向量范数作损失函数求平均的本质可以轻松带来时…

Linux自定义shell编写

Linux自定义shell编写 一.最终版本展示1.动图展示2.代码展示 二.具体步骤1.打印提示符2.解析命令行3.分析是否是内建命令1.shell对于内建名令的处理2.cd命令3.cd函数的实现4.echo命令的实现5.export命令的实现6.内建命令函数的实现 4.创建子进程通过程序替换执行命令5.循环往复…

微软开源,全平台通用:Shell 自动补全工具 | 开源日报 No.132

microsoft/inshellisense Stars: 7.6k License: MIT inshellisense 是一个为 Shell 提供 IDE 风格自动补全的工具。它是一个终端本地运行时自动完成,支持 600 多个命令行工具,并且可以在 Windows、Linux 和 macOS 上使用。主要功能包括安装后可通过运行…

30 UVM Adder Testbench Example

1 Adder Design 加法器设计在时钟的上升沿产生两个变量的加法。复位信号用于clear out信号。注:加法器可以很容易地用组合逻辑开发。引入时钟和重置,使其具有测试台代码中时钟和重置的样子/风格。 module adder(input clk, reset, input [7:0] in1, in…

【操作系统】处理机调度

文章目录 一. 实验目的二. 实验内容三. 实验步骤四. 实验结果五. 实验总结附:系列文章 一. 实验目的 (1)加深对进程概念的理解,明确进程和程序的区别 (2)深入理解系统如何组织进程 (3&#xff…