【数据结构】二叉树的概念及堆

 前言

我们已经学过了顺序表、链表、栈和队列这些属于线性结构的数据结构,那么下面我们就要学习我们第一个非线性结构,非线性结构又有哪些值得我们使用的呢?那么接下来我们就将谈谈树的概念了。

1.树的概念与结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  •  有一个特殊的结点,称为根结点,根节点没有前驱结点。
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
  • 树是递归定义的。

 注意:树形结构中,子树之间不能有交集,否则就不是树形结构,那样可能是图了,后续还会学习。

1.2树的相关概念

 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点孩子节点或子节点:个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;

1.3树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既要保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

 typedef int DataType;
struct Node
{
    struct Node* firstchild;   //第一个孩子节点
    struct Node* pnextbrother;  //指向其下一个兄弟节点
    DataType data;                //结点中的数据域
};

 

1.4树在实际中的运用(表示文件系统的目录树结构)

Linux中的文件目录就是按照一种树形结构来实现的。

2.二叉树的概念与结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合:

  • 或者为空
  • 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

 从上图可以明显看出:

  •  二叉树不存在度大于2的结点
  •  二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
  • 注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.2现实中的二叉树

简直是大自然的奇迹,相信当我们程序员看到这样一颗树,呼之欲出的就是二叉树啦。 

2.3特殊的二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2^k-1,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

 

2.4二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i-1)个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1.
3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2,则有 n0=n2 +1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log2(n+1)
是log以2为底n+1的对数。
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

  • 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
  • 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
  • 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199
2.下列数据结构中,不适合采用顺序存储结构的是( )
A 非完全二叉树
B 堆
C 队列
D 栈
3.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2
4.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12
5.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386
答案:
1.B
2.A
3.A
4.B
5.B

2.5二叉树的存储结构

二叉树一般可以使用两种存储方式,一种是顺序存储、一种是链式存储。

2.5.1顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。

而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2.5.2链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。

 

 typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
    struct BinTreeNode* pLeft; // 指向当前节点左孩子
    struct BinTreeNode* pRight; // 指向当前节点右孩子
    BTDataType data; // 当前节点值域
};
// 三叉链
struct BinaryTreeNode
{
    struct BinTreeNode* pParent; // 指向当前节点的双亲
    struct BinTreeNode* pLeft; // 指向当前节点左孩子
    struct BinTreeNode* pRight; // 指向当前节点右孩子
    BTDataType data; // 当前节点值域
};

3.二叉树的顺序结构及其实现代码

3.1二叉树的顺序结构

普通的二叉树不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

3.2堆的概念及结构

如果有一个关键码的集合K = { k0,k1 ,k2 ,…,kn-1 },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:Ki <= K2*i+1且 Ki<=K2*i+2  (Ki >= K2*i+1且 Ki>=K2*i+2,K后内容均为下标 ) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

 堆的性质

  • 堆总是一棵完全二叉树。

  • 堆中某个节点的值总是不大于或不小于其父节点的值;

 

 1.下列关键字序列为堆的是:()
A 100,60,70,50,32,65
B 60,70,65,50,32,100
C 65,100,70,32,50,60
D 70,65,100,32,50,60
E 32,50,100,70,65,60
F 50,100,70,65,60,32
2.已知小根堆为8,15,10,21,34,16,12,删除关键字 8 之后需重建堆,在此过程中,关键字之间的比较次数是()。
A 1
B 2
C 3
D 4
3.一组记录排序码为(5 11 7 2 3 17),则利用堆排序方法建立的初始堆为
A(11 5 7 2 3 17)
B(11 5 7 2 17 3)
C(17 11 7 2 3 5)
D(17 11 7 5 3 2)
E(17 7 11 3 5 2)
F(17 7 11 3 2 5)
4.最小堆[0,3,2,5,7,4,6,8],在删除堆顶元素0之后,其结果是()
A[3,2,5,7,4,6,8]
B[2,3,5,7,4,6,8]
C[2,3,4,5,7,8,6]
D[2,3,4,5,6,7,8]


选择题答案


1.A
2.C
3.C
4.C

3.3堆的实现

3.3.1堆的调整算法

向下调整

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

     int array[] = {27,15,19,18,28,34,65,49,25,37};

 

 向下调整算法代码实现

void Swap(HPDatetype* pa, HPDatetype* pb)
{HPDatetype tmp = *pa;*pa = *pb;*pb = tmp;
}
void AdjustDown(HPDatetype* a, int size, int parent)
{int child = parent * 2 + 1;while (child < size){//若假设的左孩子小,若假设是错的,更新一下if (child + 1 < size && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = child * 2 + 1;}else{break;}}
}

 向上与向下调整算法类似。

void Swap(HPDatetype* pa, HPDatetype* pb)
{HPDatetype tmp = *pa;*pa = *pb;*pb = tmp;
}
void AdjustUp(HPDatetype* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (parent - 1) / 2;}else{break;}}}

3.3.2堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

int a[] = {1,5,3,8,7,6}; 

 

3.3.3堆建时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

故建堆的时间复杂度为O(n)。 

3.3.4堆的插入

先插入一个数到数组的尾上,再进行向上调整算法,直到满足堆。

代码实现

void HeapPush(HP* php, int x)
{assert(php);if (php->capacity == php->size){int newcapacity = php->capacity == 0 ? 4 : sizeof(php->a) * 2;HPDatetype * tmp = (HPDatetype*)realloc(php->a, newcapacity*sizeof(HPDatetype));if (tmp == NULL){perror("realloc fail");exit(-1);}php->a = tmp;php->capacity = newcapacity;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);
}

3.3.5堆的删除

删除堆是删除堆顶的数据,将堆顶的数据跟最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。

代码实现

void HeapPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size, 0);
}

3.3.6堆的代码实现

Heap.h

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
#include<time.h>typedef int HPDatetype;typedef struct Heap
{int* a;int size;int capacity;
}HP;//堆的初始化
void HeapIint(HP* php);//堆的销毁
void HeapDestroy(HP* php);//堆的插入
void HeapPush(HP* php, int child);//堆的删除
void HeapPop(HP* php);//取堆顶元素
HPDatetype HeapTop(HP* php);//堆的数据个数
int HeapSize(HP* php);//堆的判空
bool HeapEmpty(HP* php);

Heap.c

#define _CRT_SECURE_NO_WARNINGS 1#include"Heap.h"void HeapIint(HP* php)
{assert(php);php->a = NULL;php->size = 0;php->capacity = 0;
}void HeapDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->capacity = 0;php->size = 0;
}
void Swap(HPDatetype* pa, HPDatetype* pb)
{HPDatetype tmp = *pa;*pa = *pb;*pb = tmp;
}
void AdjustUp(HPDatetype* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (parent - 1) / 2;}else{break;}}}
void HeapPush(HP* php, int x)
{assert(php);if (php->capacity == php->size){int newcapacity = php->capacity == 0 ? 4 : sizeof(php->a) * 2;HPDatetype * tmp = (HPDatetype*)realloc(php->a, newcapacity*sizeof(HPDatetype));if (tmp == NULL){perror("realloc fail");exit(-1);}php->a = tmp;php->capacity = newcapacity;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);
}
void AdjustDown(HPDatetype* a, int size, int parent)
{int child = parent * 2 + 1;while (child < size){//若假设的左孩子小,若假设是错的,更新一下if (child + 1 < size && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = child * 2 + 1;}else{break;}}
}
void HeapPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size, 0);
}HPDatetype HeapTop(HP* php)
{assert(php);assert(php->size > 0);return php->a[0];
}int HeapSize(HP* php)
{assert(php);return php->size;
}bool HeapEmpty(HP* php)
{assert(php);return php->size == 0;
}

3.4堆的应用

3.4.1 堆排序

1.建堆

根据升序和降序来决定是建大堆还是建小堆,

升序建大堆,反之建小堆。

2.利用堆删除思想来进行排序

 代码实现堆排序

void HeapSort(int* a, int n)
{//升序//建大堆//降序//建小堆/*for (int i = 1; i < n; i++){AdjustUp(a, i);}*/for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(a, n, i);}//选数int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

3.4.2 TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1. 用数据集合中前K个元素来建堆


前k个最大的元素,则建小堆
前k个最小的元素,则建大堆


2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素


将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

代码实现: 

void CreateNDate()
{// 造数据int n = 10000;srand(time(0));const char* file = "data.txt";FILE* fin = fopen(file, "w");if (fin == NULL){perror("fopen error");return;}for (size_t i = 0; i < n; ++i){int x = rand() % 1000000;fprintf(fin, "%d\n", x);}fclose(fin);
}void PrintTopK(int k)
{FILE* fout = fopen("data.txt", "r");if (fout == NULL){perror("fopen fail");return;}//建立k个数的小堆int* minheap = (int*)malloc(sizeof(int) * k);if (minheap == NULL){perror("malloc fail");return;}for (int i = 0; i < k; i++){fscanf(fout, "%d", &minheap[i]);AdjustUp(minheap,i);}int x = 0;while (fscanf(fout, "%d", &x) != EOF){if (x > minheap[0]){minheap[0] = x;AdjustDown(minheap, k, 0);}}for (int i = 0; i < k; i++){printf("%d ", minheap[i]);}printf("\n");free(minheap);minheap = NULL;fclose(fout);
}int main()
{int k = 5;CreateNDate();PrintTopK(k);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/232492.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker拉取镜像提示 remote trust data does not exist for xxxxxx

1、How can I be sure that I am pulling a trusted image from docker 2、docker: you are not authorized to perform this operation: server returned 401. 以上两个问题可以试试以下解决办法 DOCKER_CONTENT_TRUSTfalse 本人是使用jenkins部署自己的项目到docker容器出现…

MvvmToolkit的使用

背景&#xff1a;MvvmLight不更新了&#xff0c;用Toolkit代替 1、首先下载好社区版本的NuGet包 2、ViewModel中需要继承ObservableObject&#xff0c;查看ObservableObject可以看到里面有实现好InotifyPropertyChanged。 3、对于属性的set&#xff0c;可以简写成一行&#xff…

多线程高级知识点

多线程高级知识点 1.ThreadLocal 1.1 什么是 ThreadLocal&#xff1f; ​ ThreadLocal 叫做本地线程变量&#xff0c;意思是说&#xff0c;ThreadLocal 中填充的的是当前线程的变量&#xff0c;该变量对其他线程而言是封闭且隔离的&#xff0c;ThreadLocal 为变量在每个线程…

qt三大控件

1.QListWidget控件 先在ui界面将 QListWidget拖出来竖直对齐 再去代码中实现文本插入 两种插入方式 方法1 //listWidget使用 有左右中间对齐需求QListWidgetItem * itemnew QListWidgetItem("床前明月光"); // //上面只是独立的一句话,没有关联起来ui-&g…

6.OpenResty系列之深入理解(二)

1. 日志输出 vim /usr/local/openresty/nginx/conf/nginx.conf默认配置如下 #error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log info;#pid logs/nginx.pid;http {#log_format main $remote_addr - $remote_user [$time…

计算机Java项目|基于Springboot实现患者管理系统

作者主页&#xff1a;编程指南针 作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、掘金特邀作者、多年架构师设计经验、腾讯课堂常驻讲师 主要内容&#xff1a;Java项目、毕业设计、简历模板、学习资料、面试题库、技术互助 文末获取源码 项目编号&#xff1a;KS-032…

LeCode:(606. 根据二叉树创建字符串)

题目链接 本体的难点&#xff1a; 什么时候去打印左右括号&#xff1f;什么时候省略&#xff1f; 解题过程&#xff1a;通过观察看到&#xff0c;每次遍历结点之前&#xff0c;打印了一个左括号&#xff1b;遍历到叶子&#xff0c;叶子的左右也要打印出括号来&#xff08;先…

在VM下使用Composer完成快照方式的软件制作

Composer允许您构建软件、应用程序、偏好设置文件或是文档的安装包&#xff0c;安装包可以部署到远程电脑或是作为镜像流程的一部分。构建软件包的第一步就是创建包源&#xff0c;根据要打包的软件&#xff0c;Composer允许您监视软件的安装和使用驱动器上已存在的文件来创建包…

ansible 配置jspgou商城上线(MySQL版)

准备环境 准备两台纯净的服务器进行&#xff0c;在实验之前我们关闭防火墙和selinux systemctl stop firewalld #关闭防火墙 setenforce 0 #临时关闭selinux hosts解析(两台服务器都要去做) [rootansible-server ~]# vim /etc/hosts 10.31.162.24 ansible-ser…

性能优化-OpenMP基础教程(五)-全面讲解OpenMP基本编程方法

本文主要介绍OpenMP编程的编程要素和实战&#xff0c;包括并行域管理详细实战、任务分担详细实战。 &#x1f3ac;个人简介&#xff1a;一个全栈工程师的升级之路&#xff01; &#x1f4cb;个人专栏&#xff1a;高性能&#xff08;HPC&#xff09;开发基础教程 &#x1f380;C…

【数据仓库与联机分析处理】多维数据模型

目录 一、数据立方体 二、数据模型 &#xff08;一&#xff09;星形模型 &#xff08;二&#xff09;雪花模式 &#xff08;三&#xff09;事实星座模式 三、多维数据模型中的OLAP操作 &#xff08;一&#xff09;下钻 &#xff08;二&#xff09;上卷 &#xff08;三…

React之useRef hook

介绍 useRef是react的自定义hook&#xff0c;它用来引用一个不需要渲染的值。这篇文章会介绍useRef的简单用法。 使用场景 1.实现节流 通过useRef实现节流功能&#xff0c;在限制时间内多次提交&#xff0c;已第一次提交为准。 useThrottle.jsx import {useEffect, useRef,…

矩阵的乘法

首先矩阵的乘法定义如下&#xff1a; #include <stdio.h> int main() { int i 0; int j 0; int arr[20][20] { 0 }; int str[20][20] { 0 }; int s[20][20] { 0 }; int n1 0; int n2 0; int m2 0; int z 0; int m1 0;…

Linux入门攻坚——11、Linux网络属性配置相关知识1

网络基础知识&#xff1a; 局域网&#xff1a;以太网&#xff0c;令牌环网&#xff0c; Ethernet&#xff1a;CSMA/CD 冲突域 广播域 MAC&#xff1a;Media Access Control&#xff0c;共48bit&#xff0c;前24bit需要机构分配&#xff0c;后24bit自己…

Wnmp本地部署结合内网穿透实现任意浏览器远程访问本地服务

最近&#xff0c;我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念&#xff0c;而且内容风趣幽默。我觉得它对大家可能会有所帮助&#xff0c;所以我在此分享。点击这里跳转到网站。 文章目录 前言1.Wnmp下载安装2.Wnmp设置3.安装cpolar内网穿透3.1…

etcd储存安装

目录 etcd介绍: etcd工作原理 选举 复制日志 安全性 etcd工作场景 服务发现 etcd基本术语 etcd安装(centos) 设置&#xff1a;etcd后台运行 etcd 是云原生架构中重要的基础组件&#xff0c;由 CNCF 孵化托管。etcd 在微服务和 Kubernates 集群中不仅可以作为服务注册…

Linux引导过程与服务控制

目录 一、操作系统引导过程 1. 过程图示 2. 步骤解析 2.1 bios 2.2 mbr 2.3 grup 2.4 加载内核文件 3. 过程总结 4. centos6和centos7启动区别 5. 小结 二、服务控制及切换运行级别 1. systemd核心概念 2. 运行级别 3. 运行级别所对应的Systemd目标 4. Systemd…

计算机环境安全

操作系统安全----比如windows,linux 安全标识--实体唯一性 windows---主体&#xff1a;账户&#xff0c;计算机&#xff0c;服务 安全标识符SID-Security Identifier 普通用户SID是1000&#xff0c;管理用SID是500 linux---主体&#xff1a;用户&#xff0c;用户组&#xf…

云原生学习系列之基础环境准备(单节点安装kubernetes)

一、环境要求 操作系统CentOS 7.x-86_x64 硬件配置&#xff1a;内存2GB或2G&#xff0c;CPU 2核或CPU 2核&#xff0c;需要在虚拟机中提前设置好&#xff0c;不然后续会报错 二、系统初始化 1、设置主机名 # 在master节点执行 hostnamectl set-hostname master01 2、配置主…

论文浅尝 | 以词-词关系进行分类的统一命名实体识别

笔记整理&#xff1a;曹旭东&#xff0c;东南大学硕士&#xff0c;研究方向为知识图谱构建、自然语言处理 链接&#xff1a;https://arxiv.org/abs/2112.10070 1. 动机 在以前的工作中&#xff0c;命名实体识别&#xff08;NER&#xff09;涉及的主要问题有三种类型&#xff0c…