书生·浦语大模型实战2

轻松玩转书生·浦语大模型趣味 Demo

大模型及 InternLM 模型简介

什么是大模型

大模型通常指的是机器学习或人工智能领域中参数数量巨大、拥有庞大计算能力和参数规模的模型。这些模型利用大量数据进行训练,并且拥有数十亿甚至数千亿个参数。大模型的出现和发展得益于增长的数据量、计算能力的提升以及算法优化等因素。这些模型在各种任务中展现出惊人的性能,比如自然语言处理、计算机视觉、语音识别等。这种模型通常采用深度神经网络结构,如 TransformerBERTGPT( Generative Pre-trained Transformer )等

InternLM 模型

InternLM 是一个开源的轻量级训练框架,旨在支持大模型训练而无需大量的依赖。通过单一的代码库,它支持在拥有数千个 GPU 的大型集群上进行预训练,并在单个 GPU 上进行微调,同时实现了卓越的性能优化。在 1024 个 GPU 上训练时,InternLM 可以实现近 90% 的加速效率。

Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。通过 Lagent 框架可以更好的发挥 InternLM 的全部性能。

InternLM-Chat-7B 智能对话 Demo

环境准备

进入开发机后,在页面的左上角可以切换 JupyterLab终端和 VScode,并在终端输入 bash 命令,进入 conda 环境

进入 conda 环境之后,使用以下命令从本地克隆一个已有的 pytorch 2.0.1 的环境

bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中
/root/share/install_conda_env_internlm_base.sh internlm-demo

然后使用以下命令激活环境

conda activate internlm-demo

并在环境中安装运行 demo 所需要的依赖

# 升级pip
python -m pip install --upgrade pippip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

模型下载

InternStudio平台的 share 目录下已经为我们准备了全系列的 InternLM 模型,所以我们可以直接复制即可

mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory

# -r 选项表示递归地复制目录及其内容

也可以使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。

在 /root 路径下新建目录 model,在目录下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/model/download.py 执行下载,模型大小为 14 GB,下载模型大概需要 10~20 分钟

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='/root/model', revision='v1.0.3')

代码准备

首先 clone 代码,在 /root 路径下新建 code 目录,然后切换路径, clone 代码

mkdir -p /root/code
cd /root/code
git clone https://gitee.com/internlm/InternLM.git

切换 commit 版本,与教程 commit 版本保持一致,可以让大家更好的复现

cd InternLM
git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17

将 /root/code/InternLM/web_demo.py 中 29 行和 33 行的模型更换为本地的 /root/model/Shanghai_AI_Laboratory/internlm-chat-7b

终端运行

我们可以在 /root/code/InternLM 目录下新建一个 cli_demo.py 文件,将以下代码填入其中

import torch
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""messages = [(system_prompt, '')]print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:input_text = input("User  >>> ")input_text = input_text.replace(' ', '')if input_text == "exit":breakresponse, history = model.chat(tokenizer, input_text, history=messages)messages.append((input_text, response))print(f"robot >>> {response}")

然后在终端运行以下命令,即可体验 InternLM-Chat-7B 模型的对话能力。对话效果如下所示

python /root/code/InternLM/cli_demo.py

绷不住了,这是啥问题???哈哈哈哈哈

web demo 运行 

我们切换到 VScode 中,运行 /root/code/InternLM 目录下的 web_demo.py 文件,输入以下命令后,查看本教程5.2配置本地端口后,将端口映射到本地。在本地浏览器输入http://127.0.0.1:6006即可

bash
conda activate internlm-demo  # 首次进入 vscode 会默认是 base 环境,所以首先切换环境
cd /root/code/InternLM
streamlit run web_demo.py --server.address 127.0.0.1 --server.port 6006

Lagent 智能体工具调用 Demo

环境准备

同上InternLM-Chat-7B

模型下载

同上InternLM-Chat-7B

Lagent 安装

首先切换路径到 /root/code 克隆 lagent 仓库,并通过 pip install -e . 源码安装 Lagent

cd /root/code
git clone https://gitee.com/internlm/lagent.git
cd /root/code/lagent
git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致
pip install -e . # 源码安装

修改代码

由于代码修改的地方比较多,大家直接将 /root/code/lagent/examples/react_web_demo.py 内容替换为以下代码

import copy
import osimport streamlit as st
from streamlit.logger import get_loggerfrom lagent.actions import ActionExecutor, GoogleSearch, PythonInterpreter
from lagent.agents.react import ReAct
from lagent.llms import GPTAPI
from lagent.llms.huggingface import HFTransformerCasualLMclass SessionState:def init_state(self):"""Initialize session state variables."""st.session_state['assistant'] = []st.session_state['user'] = []#action_list = [PythonInterpreter(), GoogleSearch()]action_list = [PythonInterpreter()]st.session_state['plugin_map'] = {action.name: actionfor action in action_list}st.session_state['model_map'] = {}st.session_state['model_selected'] = Nonest.session_state['plugin_actions'] = set()def clear_state(self):"""Clear the existing session state."""st.session_state['assistant'] = []st.session_state['user'] = []st.session_state['model_selected'] = Noneif 'chatbot' in st.session_state:st.session_state['chatbot']._session_history = []class StreamlitUI:def __init__(self, session_state: SessionState):self.init_streamlit()self.session_state = session_statedef init_streamlit(self):"""Initialize Streamlit's UI settings."""st.set_page_config(layout='wide',page_title='lagent-web',page_icon='./docs/imgs/lagent_icon.png')# st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')st.sidebar.title('模型控制')def setup_sidebar(self):"""Setup the sidebar for model and plugin selection."""model_name = st.sidebar.selectbox('模型选择:', options=['gpt-3.5-turbo','internlm'])if model_name != st.session_state['model_selected']:model = self.init_model(model_name)self.session_state.clear_state()st.session_state['model_selected'] = model_nameif 'chatbot' in st.session_state:del st.session_state['chatbot']else:model = st.session_state['model_map'][model_name]plugin_name = st.sidebar.multiselect('插件选择',options=list(st.session_state['plugin_map'].keys()),default=[list(st.session_state['plugin_map'].keys())[0]],)plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]if 'chatbot' in st.session_state:st.session_state['chatbot']._action_executor = ActionExecutor(actions=plugin_action)if st.sidebar.button('清空对话', key='clear'):self.session_state.clear_state()uploaded_file = st.sidebar.file_uploader('上传文件', type=['png', 'jpg', 'jpeg', 'mp4', 'mp3', 'wav'])return model_name, model, plugin_action, uploaded_filedef init_model(self, option):"""Initialize the model based on the selected option."""if option not in st.session_state['model_map']:if option.startswith('gpt'):st.session_state['model_map'][option] = GPTAPI(model_type=option)else:st.session_state['model_map'][option] = HFTransformerCasualLM('/root/model/Shanghai_AI_Laboratory/internlm-chat-7b')return st.session_state['model_map'][option]def initialize_chatbot(self, model, plugin_action):"""Initialize the chatbot with the given model and plugin actions."""return ReAct(llm=model, action_executor=ActionExecutor(actions=plugin_action))def render_user(self, prompt: str):with st.chat_message('user'):st.markdown(prompt)def render_assistant(self, agent_return):with st.chat_message('assistant'):for action in agent_return.actions:if (action):self.render_action(action)st.markdown(agent_return.response)def render_action(self, action):with st.expander(action.type, expanded=True):st.markdown("<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>插    件</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>"  # noqa E501+ action.type + '</span></p>',unsafe_allow_html=True)st.markdown("<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>思考步骤</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>"  # noqa E501+ action.thought + '</span></p>',unsafe_allow_html=True)if (isinstance(action.args, dict) and 'text' in action.args):st.markdown("<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行内容</span><span style='width:14px;text-align:left;display:block;'>:</span></p>",  # noqa E501unsafe_allow_html=True)st.markdown(action.args['text'])self.render_action_results(action)def render_action_results(self, action):"""Render the results of action, including text, images, videos, andaudios."""if (isinstance(action.result, dict)):st.markdown("<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行结果</span><span style='width:14px;text-align:left;display:block;'>:</span></p>",  # noqa E501unsafe_allow_html=True)if 'text' in action.result:st.markdown("<p style='text-align: left;'>" + action.result['text'] +'</p>',unsafe_allow_html=True)if 'image' in action.result:image_path = action.result['image']image_data = open(image_path, 'rb').read()st.image(image_data, caption='Generated Image')if 'video' in action.result:video_data = action.result['video']video_data = open(video_data, 'rb').read()st.video(video_data)if 'audio' in action.result:audio_data = action.result['audio']audio_data = open(audio_data, 'rb').read()st.audio(audio_data)def main():logger = get_logger(__name__)# Initialize Streamlit UI and setup sidebarif 'ui' not in st.session_state:session_state = SessionState()session_state.init_state()st.session_state['ui'] = StreamlitUI(session_state)else:st.set_page_config(layout='wide',page_title='lagent-web',page_icon='./docs/imgs/lagent_icon.png')# st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')model_name, model, plugin_action, uploaded_file = st.session_state['ui'].setup_sidebar()# Initialize chatbot if it is not already initialized# or if the model has changedif 'chatbot' not in st.session_state or model != st.session_state['chatbot']._llm:st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model, plugin_action)for prompt, agent_return in zip(st.session_state['user'],st.session_state['assistant']):st.session_state['ui'].render_user(prompt)st.session_state['ui'].render_assistant(agent_return)# User input form at the bottom (this part will be at the bottom)# with st.form(key='my_form', clear_on_submit=True):if user_input := st.chat_input(''):st.session_state['ui'].render_user(user_input)st.session_state['user'].append(user_input)# Add file uploader to sidebarif uploaded_file:file_bytes = uploaded_file.read()file_type = uploaded_file.typeif 'image' in file_type:st.image(file_bytes, caption='Uploaded Image')elif 'video' in file_type:st.video(file_bytes, caption='Uploaded Video')elif 'audio' in file_type:st.audio(file_bytes, caption='Uploaded Audio')# Save the file to a temporary location and get the pathfile_path = os.path.join(root_dir, uploaded_file.name)with open(file_path, 'wb') as tmpfile:tmpfile.write(file_bytes)st.write(f'File saved at: {file_path}')user_input = '我上传了一个图像,路径为: {file_path}. {user_input}'.format(file_path=file_path, user_input=user_input)agent_return = st.session_state['chatbot'].chat(user_input)st.session_state['assistant'].append(copy.deepcopy(agent_return))logger.info(agent_return.inner_steps)st.session_state['ui'].render_assistant(agent_return)if __name__ == '__main__':root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))root_dir = os.path.join(root_dir, 'tmp_dir')os.makedirs(root_dir, exist_ok=True)main()

Demo 运行

streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

用同样的方法我们依然切换到 VScode 页面,运行成功后,查看本教程5.2配置本地端口后,将端口映射到本地。在本地浏览器输入 http://127.0.0.1:6006 即可。

我们在 Web 页面选择 InternLM 模型,等待模型加载完毕后,输入数学问题 已知 2x+3=10,求x ,此时 InternLM-Chat-7B 模型理解题意生成解此题的 Python 代码,Lagent 调度送入 Python 代码解释器求出该问题的解。

浦语·灵笔图文理解创作 Demo

环境准备

首先在 InternStudio 上选择 A100(1/4)*2 的配置

接下来打开刚刚租用服务器的 进入开发机,并在终端输入 bash 命令,进入 conda 环境,接下来就是安装依赖。

进入 conda 环境之后,使用以下命令从本地克隆一个已有的pytorch 2.0.1 的环境

/root/share/install_conda_env_internlm_base.sh xcomposer-demo

然后使用以下命令激活环境

conda activate xcomposer-demo

接下来运行以下命令,安装 transformersgradio 等依赖包。请严格安装以下版本安装!

pip install transformers==4.33.1 timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops accelerate

模型下载

InternStudio平台的 share 目录下已经为我们准备了全系列的 InternLM 模型,所以我们可以直接复制即可

mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-xcomposer-7b /root/model/Shanghai_AI_Laboratory

代码准备

在 /root/code git clone InternLM-XComposer 仓库的代码

cd /root/code
git clone https://gitee.com/internlm/InternLM-XComposer.git
cd /root/code/InternLM-XComposer
git checkout 3e8c79051a1356b9c388a6447867355c0634932d  # 最好保证和教程的 commit 版本一致

Demo 运行

cd /root/code/InternLM-XComposer
python examples/web_demo.py  \--folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b \--num_gpus 1 \--port 6006

这里 num_gpus 1 是因为InternStudio平台对于 A100(1/4)*2 识别仍为一张显卡。但如果有小伙伴课后使用两张 3090 来运行此 demo,仍需将 num_gpus 设置为 2

查看本教程5.2配置本地端口后,将端口映射到本地。在本地浏览器输入 http://127.0.0.1:6006

通用环境配置

pip、conda 换源

pip 换源

临时使用镜像源安装,如下所示:some-package 为你需要安装的包名

pip install -i https://mirrors.cernet.edu.cn/pypi/web/simple some-package

设置pip默认镜像源,升级 pip 到最新的版本 (>=10.0.0) 后进行配置,如下所示:

python -m pip install --upgrade pip
pip config set global.index-url https://mirrors.cernet.edu.cn/pypi/web/simple

如果您的 pip 默认源的网络连接较差,临时使用镜像源升级 pip:

python -m pip install -i https://mirrors.cernet.edu.cn/pypi/web/simple --upgrade pip
conda 换源

镜像站提供了 Anaconda 仓库与第三方源(conda-forge、msys2、pytorch 等),各系统都可以通过修改用户目录下的 .condarc 文件来使用镜像站。

不同系统下的 .condarc 目录如下:

  • Linux${HOME}/.condarc
  • macOS${HOME}/.condarc
  • WindowsC:\Users\<YourUserName>\.condarc

注意:

  • Windows 用户无法直接创建名为 .condarc 的文件,可先执行 conda config --set show_channel_urls yes 生成该文件之后再修改。

快速配置

cat <<'EOF' > ~/.condarc
channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
EOF

模型下载

Hugging Face

使用 Hugging Face 官方提供的 huggingface-cli 命令行工具。安装依赖:

pip install -U huggingface_hub

然后新建 python 文件,填入以下代码,运行即可。

  • resume-download:断点续下
  • local-dir:本地存储路径。(linux 环境下需要填写绝对路径)
import os# 下载模型
os.system('huggingface-cli download --resume-download internlm/internlm-chat-7b --local-dir your_path')

以下内容将展示使用 huggingface_hub 下载模型中的部分文件

import os 
from huggingface_hub import hf_hub_download  # Load model directly hf_hub_download(repo_id="internlm/internlm-7b", filename="config.json")
ModelScope

使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。

注意:cache_dir 最好为绝对路径。

安装依赖:

pip install modelscope==1.9.5
pip install transformers==4.35.2

在当前目录下新建 python 文件,填入以下代码,运行即可。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='your path', revision='master')
 OpenXLab

OpenXLab 可以通过指定模型仓库的地址,以及需要下载的文件的名称,文件所需下载的位置等,直接下载模型权重文件。

使用python脚本下载模型首先要安装依赖,安装代码如下:pip install -U openxlab 安装完成后使用 download 函数导入模型中心的模型。

from openxlab.model import download
download(model_repo='OpenLMLab/InternLM-7b', model_name='InternLM-7b', output='your local path')

课后作业

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/234088.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

react输入框检索树形(tree)结构

input搜索框搜索树形子级内容1. input框输入搜索内容2. 获取tree结构数据3. 与tree匹配输入的内容&#xff0c;tree是多维数组&#xff0c;一级一级的对比输入的内容是否匹配&#xff0c;用forEach循环遍历数据&#xff0c;匹配不到在往下找&#xff0c;直到找到为null &#x…

浅谈安科瑞直流表在孟加拉某能源公司的应用

摘要&#xff1a;本文介绍了安科瑞直流电表在孟加拉某能源公司的应用。主要用于光伏直流柜内&#xff0c;配合分流器对汇流箱的输出电流电压等进行测量&#xff0c;并采集配电现场的开关信号&#xff0c;装置带有RS485接口可以把测量和采集的数据和设备状态上传。 Abstract: T…

sql:定时执行存储过程(嵌套存储过程、使用游标)

BEGINDeclare FormNo nvarchar(20) --单号Declare Type nvarchar(50) --类型Declare PickedQty float -Declare OutQty float Declare 生产量 floatDeclare 已装箱数量 float Declare 已入库数量 floatDeclare 损耗数量 float Declare 退货品出库数量 intdeclare k c…

文件夹重命名方法:文件夹名称随机数字命名,提高文件管理效率的秘诀

在数字时代&#xff0c;每天都会创建、接收和存储大量的文件。那如何有效地管理和查找这些文件&#xff1f;下面云炫文件管理器用简单的方法使用随机数字给文件夹命名。掌握方法可以快速识别和分类文件&#xff0c;提高工作效率。 文件夹随机数字命名前后效果图。 文件夹名称…

【Java EE初阶八】多线程案例(计时器模型)

1. java标准库的计时器 1.1 关于计时器 计时器类似闹钟&#xff0c;有定时的功能&#xff0c;其主要是到时间就会执行某一操作&#xff0c;即可以指定时间&#xff0c;去执行某一逻辑&#xff08;某一代码&#xff09;。 1.2 计时器的简单介绍 在java标准库中&#xff0c;提供…

阿里云服务器Centos安装宝塔面板

阿里云服务器Centos安装宝塔面板 1 背景1.1 aliyun1.2 Linux 2 安装步骤2.0 环境配置2.1 安装前准备2.2 宝塔安装2.3 建站 3 centos常用命令3.1 防火墙相关 1 背景 1.1 aliyun 阿里云服务器是阿里云提供的一项云计算服务&#xff0c;它能够帮助用户快速搭建网站、应用和服务&…

苍穹外卖Day01——总结1

总结1 1. 软件开发整体介绍1.1 软件开发流程1.2 角色分工1.3 软件环境 2. 苍穹外卖项目介绍2.1 项目介绍2.2 技术选项 3. Swagger4. 补充内容&#xff08;待解决...&#xff09; 1. 软件开发整体介绍 1.1 软件开发流程 1.2 角色分工 从角色分工里面就可以查看自己以后从事哪一…

寄10公斤包裹哪个快递便宜(寄快递哪个比较便宜)

如今&#xff0c;随着互联网的发展&#xff0c;越来越多的人选择网上购物&#xff0c;这支撑了许多物流公司不断地向前发展。所以快递行业的前景还是很光明的。现在当天寄出最晚第二天就能收到。但是快递公司那么多&#xff0c;每个公司的特色和收费都有差异。怎样才能选择合适…

windows通过ssh连接Liunx服务器并实现上传下载文件

连接ssh 输入&#xff1a;ssh空格用户名ip地址&#xff0c;然后按Enter 有可能出现下图提示&#xff0c;输入yes 回车即可 输入 password &#xff0c;注意密码是不显示的&#xff0c;输入完&#xff0c;再按回车就行了 以上是端口默认22情况下ssh连接&#xff0c;有些公司它…

微信小程序 获取地址信息(uniapp)

参考API地址&#xff1a;微信小程序JavaScript SDK | 腾讯位置服务 <script> // 引入SDK核心类&#xff0c;js文件根据自己业务&#xff0c;位置可自行放置var QQMapWX require(../../js/uploadImg/qqmap-wx-jssdk.js);export default {data(){return{qqmapsdk:}},onL…

Linux_CentOS_7.9_Oracle11gr2配置数据库及监听服务自启动多方案实操之简易记录

前言: 作为运维保障,都无法准确预估硬件宕机的突发阶段,其生产数据实时在产出,那作为dba数据库服务以及相关Listener的其重要性、必要性就突显而出。这里拿虚拟机试验做个配置记录,便于大家学习参考。 实现方法一: 环境变量值::$ORACLE_HOME= /data/oracle/product/1…

NVIDIA Container Toolkit(NVIDIA Docker)

引言 Nvidia Docker该项目已被NVIDIA Container Toolkit取代。此存储库提供的工具已被弃用&#xff0c;并且该存储库已存档。 nvidia-docker不再支持包装器&#xff0c;并且 NVIDIA Container Toolkit 已进行扩展&#xff0c;允许用户配置 Docker 以使用 NVIDIA Container Ru…

Excel5:自动化周报的制作

自动化周报的数据引用来源于8月成交数据-纯数值表格&#xff0c;因为8月成交数据表格中部分单元格中有vlookup函数&#xff0c;且存在跨表连接。 对于跨表连接的解释和说明&#xff1f; 首先打开我们之前做好的成交数据。打开后我们可以看到这上面出现了一个安全警告&#xff0…

什么是SEO?SEO还存在吗?

曾经火热的seo&#xff0c;至今为啥很少人知道呢&#xff1f;为啥说seo是曾经的火热&#xff0c;这还得从那时百度的算法来说起了&#xff0c;曾经的百度可以通过seo优化自己的网站来获得百度爬虫的爬取&#xff0c;从而在百度获得更高的排名和权重。 现在我们打开百度随便搜索…

zabbix部署

zabbix部署 部署zabbix服务被监测主机部署zabbix-agent2 使用版本 组件版本centos7.9zabbix5.0php7.2.24MariaDB5.5.68 部署zabbix服务 关闭防火墙和selinux [rootnode ~]# systemctl status firewalld ● firewalld.service - firewalld - dynamic firewall daemonLoaded: …

LeetCode-棒球比赛(682)

题目描述&#xff1a; 你现在是一场采用特殊赛制棒球比赛的记录员。这场比赛由若干回合组成&#xff0c;过去几回合的得分可能会影响以后几回合的得分。 比赛开始时&#xff0c;记录是空白的。你会得到一个记录操作的字符串列表 ops&#xff0c;其中 ops[i] 是你需要记录的第…

C#: Label、TextBox 鼠标停留时显示提示信息

说明&#xff1a;记录在 Label、TextBox 控件上 鼠标停留时显示提示信息的方法。 1.效果图 2.具体实现步骤 1. 在Form 窗口中先创建 Label 并取名&#xff1a;KEY_label &#xff0c;或 TextBox 取名&#xff1a;KEY_textBox 2. lable控件的 tips 实现方法1 &#xff1a;代码…

18款Visual Studio实用插件(更新)

前言 俗话说的好工欲善其事必先利其器&#xff0c;安装一些Visual Studio实用插件对自己日常的开发和工作效率能够大大的提升&#xff0c;避免996从选一款好的IDE实用插件开始。以下是我认为比较实用的Visual Studio插件希望对大家有用&#xff0c;大家有更好的插件推荐可在文…

用cmd打开mysql显示拒绝访问

使用winR键输入cmd&#xff0c;打开命令行窗口提示符&#xff0c;输入net start mysql 出现&#xff1a;发生系统错误 5&#xff0c;拒绝访问 如何解决 同样的步骤&#xff0c;我们使用winR键输入cmd打开命令行提示窗口提示符&#xff0c; 按住ctrlshiftEnter键使用管理员打…

嵌入式-C语言-江科大-指针的详解与应用

文章目录 一&#xff1a;计算机存储机制二&#xff1a;定义指针三&#xff1a;指针的操作四&#xff1a;数组与指针五&#xff1a;指针的应用道友&#xff1a;最清晰的脚印&#xff0c;踩在最泥泞的道路上。 推荐视频配合我的笔记使用 [C语言] 指针的详解与应用-理论结合实践&a…