Amazing OpenAI API:把非 OpenAI 模型都按 OpenAI API 调用

分享一个有趣的小工具,10MB 身材的小工具,能够将各种不同的模型 API 转换为开箱即用的 OpenAI API 格式。

让许多依赖 OpenAI API 的软件能够借助开发者能够接触到的,非 OpenAI 的 API 私有部署和使用起来。

写在前面

这个小工具软件写于两周之前的 2023 年年底,开源在了 GitHub:soulteary/amazing-openai-api,有需要可以自取,欢迎一键三连。

开源小项目:AOA

目前项目只适配了三种我在使用的模型的 API,如果你觉得有其他的合适的 API 或者你认为很靠谱的模型,欢迎提交 PR。

这个小工具的思路借鉴于 stulzq/azure-openai-proxy,一个将 Azure OpenAI API 转换为 OpenAI API 格式的项目。在本地使用这个项目一段时间之后,我 fork 出了一个新的版本 soulteary/azure-openai-proxy,并将修改以 PR 形式反馈给了原始项目。随后,因为想在本地应用中测试 Yi-34B API,我制作了一个新的工具:soulteary/yi-openai-proxy,在随后 Gemini Pro API 出现了,想着不能每处一个模型就折腾一个这样的项目,后面太难维护了。

于是,我彻底重构了项目,并起一个略搞怪的名字:Amazing OpenAI API,和一个有意思的像是表情包的别名:AOA

下载工具

这个工具有两种使用方法,一种是从 GitHub Release 发布页面 下载二进制文件。

发布页面的二进制文件

另外一种方法,则是使用 Docker ,从社区下载 GitHub 自动构建好的指定版本的容器镜像:

docker pull soulteary/amazing-openai-api:v0.6.1

快速上手

AOA 的使用是不需要编写任何程序配置文件,我们通过指定环境变量就能够完成应用行为的调整。

我们可以通过这个方式调整的程序行为包括:“选择工作模型”、“设置模型运行需要的参数”、“设置模型兼容别名”。

直接运行可执行文件

程序默认支持三种模型的 API 转换,如果我们不进行任何参数指定,那么程序将默认将工作模型设置为 azure 模型。如果你希望使用 yi-34b-chatgemini-pro,需要设置环境变量 AOA_TYPE=yi 或者 AOA_TYPE=gemini,来让程序切换工作模式。

当我们不使用任何参数,直接执行程序(azure 模式)。这个时候,我们只需要额外设置环境变量 AZURE_ENDPOINT,就可以正常使用服务啦:

AZURE_ENDPOINT=https://你的部署名称.openai.azure.com/

完整的执行命令如下:

AZURE_ENDPOINT=https://你的部署名称.openai.azure.com/ ./aoa

当服务启动之后,我们的程序就可以通过访问 http://localhost:8080/v1/* 的地址,实现和访问 OpenAI 一样的 API 的效果啦。

使用 Docker 运行 AOA

如果你更喜欢使用 Docker,可以用下面的命令来实现和上面一样的效果:

docker run --rm -it -e AZURE_ENDPOINT=https://suyang231210.openai.azure.com/ -p 8080:8080 soulteary/amazing-openai-api:v0.6.1

同样的,我们就可以访问 http://localhost:8080/v1/* 的地址,使用 OpenAI 格式的请求来访问 Azure OpenAI、Yi 34B-Chat、Gemini Pro 啦。

每个模型的详细使用示例,可以参考下文中的 Docker Compose 使用示例。

工具特色

这个小工具有两个有趣的特色功能。

保护我们的 API Key

在日常测试各种 AI 应用的时候,许多应用都需要我们设置 API Key 给它。

你如果你希望不要将 API Key 暴露给应用,或者不放心各种复杂的开源软件是否有 API Key 泄漏风险。

我们可以将 API Key 配置在工具中,比如在 Azure 模式的时候,可以添加 AZURE_API_KEY=你的 API Key 这个环境变量。以上文中 Azure 的命令为例,我们可以将命令改写为:

AZURE_ENDPOINT=https://<你的 Endpoint 地址>.openai.azure.com/ AZURE_API_KEY=<你的 API KEY> AZURE_MODEL_ALIAS=gpt-3.5-turbo:gpt-35 ./aoa

然后,各种软件在请求的模型 API 的时候,就不需要再填写 API Key 啦,或者你随便填一个也行。

这样就起到了严格的 API Key 隔离,提升了 API Key 的安全性。

方便的模型映射功能

如果你使用 Azure,你一定知道 Azure 中的 Deployment Name 需要在请求参数中体现。同样的,Yi 模型、Gemini Pro 也需要在请求的时候,设置这些模型的名称在请求参数中。

但是,我们的使用的软件,通常只支持调用:GPT 3.5、GPT 3.5 Turbo、GPT-4 等等“事实标准”。 总不能每用一个软件就要改下人家代码,来适配这个模型名称吧,并且很多软件也不一定是开源的,折腾起来未免太麻烦了。

好在我们可以通过下面的方式,来将软件调用模型的名称进行一键“替换”,替换为我们实际在使用的模型。

比如,我们可以通过下面的方式,来将原始请求中的模型,映射为我们真实的模型名称。比如,想要将 GPT 3.5/4 都替换为 yi-34b-chat,我们可以这样写一条映射规则:

gpt-3.5-turbo:yi-34b-chat,gpt-4:yi-34b-chat

我们还是先拿上文中的 Azure 来举例,如果我们的 Azure 部署名称是 gpt-35,我们希望将软件请求中的 gpt-3.5gpt-4 都替换为这个部署名称:

AZURE_ENDPOINT=https://<你的 Endpoint 地址>.openai.azure.com/ AZURE_API_KEY=<你的 API KEY> AZURE_MODEL_ALIAS=gpt-3.5-turbo:gpt-35,gpt-4:gpt-35./aoa

是不是很简单。

使用 Yi 34B Chat 模型

如果我们想将 Yi 官方的 API 转换为标准的 OpenAI API 调用,可以使用下面的命令:

AOA_TYPE=yi YI_ENDPOINT=<你的 API 地址> YI_API_KEY=<你的 API KEY> ./aoa

和使用 Azure 服务类似,我们可以使用一个技巧将各种开源、闭源软件使用的模型自动映射为我们希望的模型:

# 比如不论是 3.5 还是 4 都映射为 `gpt-35`
YI_MODEL_ALIAS=gpt-3.5-turbo:yi-34b-chat,gpt-4:yi-34b-chat

完整命令如下:

AOA_TYPE=yi YI_ENDPOINT=<你的 API 地址> YI_API_KEY=<你的 API KEY> YI_MODEL_ALIAS=gpt-3.5-turbo:yi-34b-chat,gpt-4:yi-34b-chat ./aoa

如果我们在启动服务的时候配置了 YI_API_KEY 的话,不论是开源软件也好,使用 curl 调用也罢,我们都不需要添加 Authorization: Bearer <你的 API Key>(也可以随便写),这样就起到了严格的 API Key 隔离,提升了 API Key 的安全性。

如果你还是习惯在请求头参数中添加认证内容,可以使用下面的不包含 YI_API_KEY 的命令,程序将透传验证到 Yi API 服务:

AOA_TYPE=yi YI_ENDPOINT=<你的 API 地址> YI_MODEL_ALIAS=gpt-3.5-turbo:yi-34b-chat,gpt-4:yi-34b-chat ./aoa

使用 Gemini Pro 模型

如果我们想将 Google 官方的 Gemini API 转换为标准的 OpenAI 调用,可以用下面的命令:

AOA_TYPE=gemini GEMINI_API_KEY=<你的 API KEY> ./aoa

和使用 Azure 服务类似,我们可以使用一个技巧将各种开源、闭源软件使用的模型自动映射为我们希望的模型:

# 比如不论是 3.5 还是 4 都映射为 `gpt-35`
GEMINI_MODEL_ALIAS=gpt-3.5-turbo:gemini-pro,gpt-4:gemini-pro

完整命令如下:

AOA_TYPE=gemini GEMINI_API_KEY=<你的 API KEY> GEMINI_MODEL_ALIAS=gpt-3.5-turbo:gemini-pro,gpt-4:gemini-pro ./aoa

和上面类似,如果你还是希望每次请求的时候,都携带 API Key,可以不传递 GEMINI_API_KEY 参数:

AOA_TYPE=gemini GEMINI_MODEL_ALIAS=gpt-3.5-turbo:gemini-pro,gpt-4:gemini-pro ./aoa

Docker Compose 使用示例

下面,我们分别以 Azure、Yi、Gemini 为例,演示下如何编写 docker-compose.yml 配置,先来看看 Azure:

version: "3"services:amazing-openai-api:image: soulteary/amazing-openai-api:v0.6.1restart: alwaysports:- 8080:8080environment:- AZURE_ENDPOINT=https://<修改为你的部署名称>.openai.azure.com/- AZURE_API_KEY=<修改为你的API KEY>- AZURE_MODEL=gpt-4# 模型名称映射,比如将请求中的 GPT 3.5 Turbo 映射为 GPT 4- AZURE_MODEL_ALIAS=gpt-3.5-turbo:gpt-4logging:options:max-size: 1m

然后是 Yi:

version: "3"services:amazing-openai-api:image: soulteary/amazing-openai-api:v0.6.1restart: alwaysports:- 8080:8080environment:# 设置工作模型为 YI- AOA_TYPE=yi# 设置 YI API 服务器地址- YI_ENDPOINT=<修改为你申请或搭建的服务地址># 设置 YI API Key- YI_API_KEY=<修改为你的API KEY># 模型名称映射,比如将请求中的 GPT 3.5 Turbo,GPT-4 都映射为 yi-34b-chat- YI_MODEL_ALIAS=gpt-3.5-turbo:yi-34b-chat,gpt-4:yi-34b-chatlogging:options:max-size: 1m

最后是 Gemini:

version: "3"services:amazing-openai-api:image: soulteary/amazing-openai-api:v0.6.1restart: alwaysports:- 8080:8080environment:# 设置工作模型为 Gemini- AOA_TYPE=gemini# 设置 Gemini API Key- GEMINI_API_KEY=<修改为你的API KEY># 模型名称映射,比如将请求中的 GPT 3.5 Turbo,GPT-4 都映射为 gemini-pro- GEMINI_MODEL_ALIAS=gpt-3.5-turbo:gemini-pro,gpt-4:gemini-pro# 限制国内请求,需要使用服务器进行代理中转,或者跑在国外服务器上- https_proxy=http://10.11.12.90:7890logging:options:max-size: 1m

根据你的实际需求和想使用的模型情况,将上面的内容进行完善,并保存为 docker-compose.yml,然后执行 docker compose up -d,稍等片刻,服务就运行起来啦。

接着,我们可以使用自己顺手的软件来进行接口测试,比如用 curl 测试一把模型的流式输出:

curl http://0.0.0.0:8080/v1/chat/completions \-H "Content-Type: application/json" \-H "Authorization: Bearer soulteary" \-d '{"model": "gpt-4","messages": [{"role": "user", "content": "Hello."}],"temperature": 0.2,"stream": true}'

命令执行完毕,我们将得到类似下面的输出:

data: {"id":"79fb180d21694513","created":0,"model":"yi-34b-chat","choices":[{"delta":{"role":"assistant"},"index":0}],"content":"","lastOne":false}data: {"id":"79fb180d21694513","object":"chat.completion.chunk","created":3705525,"model":"yi-34b-chat","choices":[{"delta":{"role":"assistant","content":"Hello"},"index":0}],"content":"Hello","lastOne":false}...data: {"id":"79fb180d21694513","object":"chat.completion.chunk","created":3705525,"model":"yi-34b-chat","choices":[{"delta":{"role":"assistant","content":""},"index":0,"finish_reason":"stop"}],"content":"Hello! How can I assist you today? If you have any questions or need information on a specific topic, feel free to ask.","usage":{"completion_tokens":27,"prompt_tokens":14,"total_tokens":41},"lastOne":true}data: [DONE]

或者用客户端软件,来一个最普通的模型 API 调用:

一个最简单的模型 AI 调用 GPT-4 (实际请求的是 Yi)

最后

这篇文章就先写到这里吧。

接下来,我们来聊聊用这个方式来折腾一些有趣的东西。

—EOF


本文使用「署名 4.0 国际 (CC BY 4.0)」许可协议,欢迎转载、或重新修改使用,但需要注明来源。 署名 4.0 国际 (CC BY 4.0)

本文作者: 苏洋

创建时间: 2024年01月09日
统计字数: 6809字
阅读时间: 14分钟阅读
本文链接: https://soulteary.com/2024/01/09/amazing-openai-api-call-all-non-openai-models-according-to-the-openai-api.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/234929.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++学习笔记——对象的指针

目录 一、对象的指针 二、减少对象的复制开销 三、应用案例 游戏引擎 图像处理库 数据库管理系统 航空航天软件 金融交易系统 四、代码的案例应用 一、对象的指针 是一种常用的技术&#xff0c;用于处理对象的动态分配和管理。使用对象的指针可以实现以下几个方面的功…

HTTP介绍

目录 HTTP介绍 1、HTTP 工作原理 2、HTTP 消息结构 3、客户端请求消息 4、服务器响应消息 5、HTTP 请求方法 6、HTTP 响应头信息 7、HTTP 状态码 HTTP介绍 1、HTTP 工作原理 HTTP协议工作于客户端-服务端架构上。浏览器作为HTTP客户端通过URL向HTTP服务端即WEB服务器发…

2024-01-03 无重叠区间

435. 无重叠区间 思路&#xff1a;和最少数量引爆气球的箭的思路基本都是一致了&#xff01;贪心就是比较左边的值是否大于下一个右边的值 class Solution:def eraseOverlapIntervals(self, points: List[List[int]]) -> int:points.sort(keylambda x: (x[0], x[1]))# 比较…

20、Kubernetes核心技术 - 基于Prometheus和Grafana搭建集群监控平台

目录 一、概述 二、监控平台架构图​编辑 三、部署 Prometheus 3.1、Prometheus简介 3.2、部署守护进程node-exporter 3.3、部署rbac 3.4、ConfigMap 3.5、Deployment 3.6、Service 3.7、验证Prometheus 四、部署Grafana 4.1、Deployment 4.2、Service 4.3、Ing…

12.1SPI驱动框架

SPI硬件基础 总线拓扑结构 引脚含义 DO(MOSI)&#xff1a;Master Output, Slave Input&#xff0c; SPI主控用来发出数据&#xff0c;SPI从设备用来接收数据 DI(MISO) &#xff1a;Master Input, Slave Output&#xff0c; SPI主控用来发出数据&#xff0c;SPI从设备用来接收…

大气精美网站APP官网HTML源码

源码介绍 大气精美网站APP官网源码&#xff0c;好看实用&#xff0c;记事本修改里面的内容即可&#xff0c;喜欢的朋友可以拿去研究 下载地址 蓝奏云&#xff1a;https://wfr.lanzout.com/itqxN1ko2ovi CSDN免积分下载&#xff1a;https://download.csdn.net/download/huayu…

报错解决方法——http404(Spring MVC)

一.检查静态资源是否加载成功 成功的标志就是在项目跑起来之后再target文件夹中的classes文件夹中可以找到自己写的配置文件。 1.查看resources文件夹是否被识别为资源文件夹 如图所示&#xff0c;文件夹图标右下角有三条杠代表被识别为资源文件 2.在pox.xml文件中插入如下…

FineBI实战项目一(4):指标分析之每日订单总额/总笔数

1 明确数据分析目标 统计每天的订单总金额及订单总笔数 2 创建用于保存数据分析结果的表 use finebi_shop_bi;create table app_order_total(id int primary key auto_increment,dt date,total_money double,total_cnt int ); 3 编写SQL语句进行数据分析 selectsubstring(c…

Redis内存策略:「过期Key删除策略」+ 「内存淘汰策略」

Redis之所以性能强&#xff0c;最主要的原因就是基于内存存储&#xff0c;然而单节点的Redis其内存大小不宜过大&#xff0c;否则会影响持久化或主从同步的性能。 Redis内存满了&#xff0c;会发生什么&#xff1f; 在Redis的运行内存达到了某个阈值&#xff0c;就会触发内存…

Docker-Compose部署Redis(v7.2)主从模式

文章目录 一、前提准备1. redis配置文件2. 下载redis镜像3. 文件夹结构 二、docker-compose三、主从配置1.主节点配置文件2.从节点配置文件 四、运行五、测试 环境 docker desktop for windows 4.23.0redis 7.2 一、前提准备 1. redis配置文件 因为Redis 7.2 docker镜像里面…

用户管理第一节课,阿里生成代码包

鱼皮教程生成所用到的 一、网址 网址&#xff1a; Cloud Native App Initializer (aliyun.com) 二、仿照生成 2.1 Maven Project & Java 2.2 Spring Boot版本 2.3 高级选项 2.3.1 项目名称可根据需求改 注意&#xff1a;不要有空格 2.4 应用架构 选择&#xff1a;单…

RabbitMQ高级

文章目录 一.消息可靠性1.生产者消息确认2.消息持久化3.消费者确认4.消费者失败重试 MQ的一些常见问题 1.消息可靠性问题:如何确保发送的消息至少被消费一次 2.延迟消息问题:如何实现消息的延迟投递 3.高可用问题:如何避免单点的MQ故障而导致的不可用问题 4.消息堆积问题:如…

统一网关 Gateway【微服务】

文章目录 1. 前言2. 搭建网关服务3. 路由断言工厂4. 路由过滤器4.1 普通过滤器4.2 全局过滤器4.3 过滤器执行顺序 5. 跨域问题处理 1. 前言 通过前面的学习我们知道&#xff0c;通过 Feign 就可以向指定的微服务发起 http 请求&#xff0c;完成远程调用。但是这里有一个问题&am…

力扣最热一百题——只出现一次的数字

这个合集已经很久没有更新了&#xff0c;今天来更新更新~~~ 目录 力扣题号 题目 题目描述 示例 提示 题解 Java解法一&#xff1a;Map集合 Java解法二&#xff1a;位运算 C位运算代码 力扣题号 136. 只出现一次的数字 - 力扣&#xff08;LeetCode&#xff09; 下述题…

Linux 常用指令汇总

Linux 常用指令汇总 文章目录 Linux 常用指令汇总[toc]前言一、文件目录指令pwd 指令ls 指令cd 指令mkdir 指令rmdir 指令tree 指令cp 指令rm 指令mv 指令cat 指令more 指令less 指令head 指令tail 指令echo 指令> 指令>> 指令 二、时间日期指令date 指令cal 指令 三、…

MySQL语法及IDEA使用MySQL大全

在项目中我们时常需要写SQL语句&#xff0c;或简单的使用注解直接开发&#xff0c;或使用XML进行动态SQL之类的相对困难的SQL&#xff0c;并在IDEA中操控我们的SQL&#xff0c;但网上大都图方便或者觉得太简单了&#xff0c;完全没一个涵盖两个方面的讲解。 单表&#xff1a; …

[C#]winform部署PaddleDetection的yolo印章检测模型

【官方框架地址】 https://github.com/PaddlePaddle/PaddleDetection.git 【算法介绍】 PaddleDetection 是一个基于 PaddlePaddle&#xff08;飞桨&#xff09;深度学习框架的开源目标检测工具库。它提供了一系列先进的目标检测算法&#xff0c;包括但不限于 Faster R-CNN, …

音量控制软件sound control mac功能亮点

sound control mac可以帮助用户控制某个独立应用程序的音量&#xff0c;通过每应用音量&#xff0c;均衡器&#xff0c;平衡和音频路由独立控制每个应用的音频&#xff0c;还有整个系统的音量。 sound control mac功能亮点 每个应用程序的音量控制 独立控制应用的数量。 键盘音…

接口功能测试策略

由于平台服务器是通过接口来与客户端交互数据提供各种服务&#xff0c;因此服务器测试工作首先需要进行的是接口测试工作。测试人员需要通过服务器接口功能测试来确保接口功能实现正确&#xff0c;那么其他测试人员进行客户端与服务器结合的系统测试过程中&#xff0c;就能够排…

【现代密码学】笔记3.4-3.7--构造安全加密方案、CPA安全、CCA安全 《introduction to modern cryphtography》

【现代密码学】笔记3.4-3.7--构造安全加密方案、CPA安全、CCA安全 《introduction to modern cryphtography》 写在最前面私钥加密与伪随机性 第二部分流加密与CPA多重加密 CPA安全加密方案CPA安全实验、预言机访问&#xff08;oracle access&#xff09; 操作模式伪随机函数PR…