深入理解 Flink(四)Flink Time+WaterMark+Window 深入分析

Flink Window 常见需求背景

需求描述

每隔 5 秒,计算最近 10 秒单词出现的次数 —— 滑动窗口
每隔 5 秒,计算最近 5 秒单词出现的次数 —— 滚动窗口
在这里插入图片描述

关于 Flink time 种类 TimeCharacteristic

在这里插入图片描述

  • ProcessingTime
  • IngestionTime
  • EventTime

WindowAssigner 的子类

  • SlidingProcessingTimeWindows
  • SlidingEventTimeWindows
  • TumblingEventTimeWindows
  • TumblingProcessingTimeWindows

使用 EventTime + WaterMark 处理乱序数据

示意图:
在这里插入图片描述

  • 使用 onPeriodicEmit 方法发送 watermark,默认每 200ms 发一次。
  • 窗口起始时间默认按各个时区的整点时间,支持自定义 offset。

Flink Watermark 机制定义

有序的流的 Watermarks

在这里插入图片描述

无序的流的 Watermarks

在这里插入图片描述

多并行度流的 Watermarks

在这里插入图片描述

深入理解 Flink Watermark

Flink Window 触发的条件:

  1. watermark 时间 >= window_end_time
  2. 在 [window_start_time, window_end_time) 区间中有数据存在(注意是左闭右开的区间),而且是以 event time 来计算的

Flink 处理太过延迟数据

Flink 丢弃延迟太多的数据

企业生产中一般不用。

Flink 指定允许再次迟到的时间

治标不治本,企业生产中一般不用。

Flink 收集迟到的数据单独处理

企业生产中应用较为广泛。

Flink 多并行度 Watermark

一个 window 可能会接受到多个 waterMark,我们以最小的为准。
在这里插入图片描述

Flink Window 概述

官网介绍

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/datastream/operators/windows/
在这里插入图片描述

Flink Window 分类

Flink 的 window 分为两种类型的 Window,分别是:Keyed Windows 和 Non-Keyed Windows,他们的使用方式不同:

// Keyed Windows 
stream.keyBy(...) <- keyed versus non-keyed windows.window(...) <- required: "assigner"[.trigger(...)] <- optional: "trigger" (else default trigger)[.evictor(...)] <- optional: "evictor" (else no evictor)[.allowedLateness(...)] <- optional: "lateness" (else zero)[.sideOutputLateData(...)] <- optional: "output tag" (else no side output for late data).reduce/aggregate/apply() <- required: "function"[.getSideOutput(...)] <- optional: "output tag"
// Non-Keyed Windows
stream.windowAll(...) <- required: "assigner"[.trigger(...)] <- optional: "trigger" (else default trigger)[.evictor(...)] <- optional: "evictor" (else no evictor)[.allowedLateness(...)] <- optional: "lateness" (else zero)[.sideOutputLateData(...)] <- optional: "output tag" (else no side output for late data).reduce/aggregate/apply() <- required: "function"[.getSideOutput(...)] <- optional: "output tag"

Window 的生命周期

  1. 当属于某个窗口的第一个元素到达的时候,就会创建一个窗口。
  2. 当时间(event or processing time)超过 window 的结束时间戳加上用户指定的允许延迟(Allowed Lateness)时,窗口将被完全删除。
  3. 每个 Window 之上,都绑定有一个 Trigger 或者一个 Function(ProcessWindowFunction, ReduceFunction, or AggregateFunction)用来执行窗口内数据的计算。
  4. 可以给 Window 指定一个 Evictor,它能够在 after the trigger fires 以及 before and/or after the function is applied 从窗口中删除元素。

Flink Window 类型

Flink 流批同一前后的 Window 分类:
在这里插入图片描述

tumblingwindows —— 滚动窗口

在这里插入图片描述

slidingwindows —— 滑动窗口

在这里插入图片描述

session windows —— 会话窗口

在这里插入图片描述

global windows —— 全局窗口

在这里插入图片描述

Flink Window 操作使用

高级玩法:自定义 Trigger、自定义 Evictor,读者可自行搜索相关文章与代码。

Flink Window 增量聚合

  • reduce(ReduceFunction)
  • aggregate(AggregateFunction)
  • sum()
  • min()
  • max()
  • sum()

Flink Window 全量聚合

  • apply(WindowFunction)
  • process(ProcessWindowFunction)

Flink Window Join

// 在 Flink 中对两个 DataStream 做 Join
// 1、指定两张表
// 2、指定这两张表的链接字段
stream.join(otherStream) // 两个流进行关联.where(<KeySelector>) // 选择第一个流的key作为关联字段.equalTo(<KeySelector>) // 选择第二个流的key作为关联字段.window(<WindowAssigner>) // 设置窗口的类型.apply(<JoinFunction>) // 对结果做操作 process apply = foreach

Tumbling Window Join

在这里插入图片描述

Sliding Window Join

在这里插入图片描述

Session Window Join

在这里插入图片描述

Interval Join

在这里插入图片描述
核心代码示例:

DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;
orangeStream.keyBy(<KeySelector>).intervalJoin(greenStream.keyBy(<KeySelector>)).between(Time.milliseconds(-2), Time.milliseconds(1)).process (new ProcessJoinFunction<Integer, Integer, String(){@Overridepublic void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {out.collect(first + "," + second);}});

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/235817.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Django(六)

员工管理系统(用户管理&#xff09; {% extends layout.html %}{% block content %}<div class"container"><div style"margin-bottom: 10px"><a class"btn btn-success" href"#"><span class"glyphicon gl…

ADOV路由和DSR路由matlab对比仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 ADOV路由&#xff08;Ad hoc On-demand Distance Vector Routing&#xff09; 4.2 DSR路由&#xff08;Dynamic Source Routing&#xff09; 5.完整程序 1.程序功能描述 ADOV路由和DSR…

Vue3-44-Pinia- 安装步骤

介绍 本文介绍 在 vue3 中 安装 Pinia 的步骤 安装步骤 1、npm 安装 npm install pinia》 安装完成后可以看到 package.json 中添加了 pinia 的依赖信息 2、main.ts 中配置 // 引入 vue实例创建方法 import { createApp } from vue// 引入pinia import { createPinia } fro…

【AIGC】一组精美动物AI智能画法秘诀

如何使用AI绘画&#xff0c;从以下角度&#xff0c;依据表格内容梳理&#xff0c;表格如下&#xff1a; 外貌特征物种姿势特征描述场景风格技术描述小巧可爱幼小浣熊倚在桌子上具有人形特征中世纪酒馆电影风格照明8k分辨率细节精致毛茸茸手持咖啡杯Jean-Baptiste Monge的风格蓝…

C++ n皇后问题 || 深度优先搜索模版题

n− 皇后问题是指将 n 个皇后放在 nn 的国际象棋棋盘上&#xff0c;使得皇后不能相互攻击到&#xff0c;即任意两个皇后都不能处于同一行、同一列或同一斜线上。 现在给定整数 n &#xff0c;请你输出所有的满足条件的棋子摆法。 输入格式 共一行&#xff0c;包含整数 n 。 …

14.LVM管理

LVM管理 文章目录 LVM管理1. lvm的应用场景及其弊端2. 物理卷、卷组、逻辑卷3. lvm管理3.1 部署lvm3.2 卷组管理3.3 逻辑卷管理 1. lvm的应用场景及其弊端 应用场景&#xff1a; 随着公司的发展&#xff0c;数据增长较快&#xff0c;最初规划的磁盘容量不够用了 弊端&#xff1…

极客时间-读多写少型缓存设计

背景 内容是极客时间-徐长龙老师的高并发系统实战课的个人学习笔记&#xff0c;欢迎大家学习&#xff01;https://time.geekbang.org/column/article/596644 总览内容如下&#xff1a; 缓存性价比 一般来说&#xff0c;只有热点数据放到缓存才更有价值 数据量查询频率命中…

网络安全B模块(笔记详解)- 网络爬虫渗透测试

ARP协议渗透测试 1.进入渗透机场景BT5中的/root目录,完善该目录下的arp_spoof.py文件,填写该文件当中空缺的Flag1字符串,将该字符串作为Flag值(形式:Flag1字符串)提交;(arp_spoof.py脚本功能见该任务第6题) 根据缺少的发现是要time模块 Flag:time 2.进入渗透机场景B…

Springboot+vue的毕业论文管理系统(有报告)。Javaee项目,springboot vue前后端分离项目

演示视频&#xff1a; Springbootvue的毕业论文管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项目 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的前后端分离的毕业论文管理系统&#xff0c;采用M&#xff08;model&…

Redis性能大挑战:深入剖析缓存抖动现象及有效应对的战术指南

在实际应用中&#xff0c;你是否遇到过这样的情况&#xff0c;本来Redis运行的好好的&#xff0c;响应也挺正常&#xff0c;但突然就变慢了&#xff0c;响应时间增加了&#xff0c;这不仅会影响用户体验&#xff0c;还会牵连其他系统。 那如何排查Redis变慢的情况呢&#xff1f…

蓝桥杯基础知识2 全排列 next_permutation(), prev_permutation()

蓝桥杯基础知识2 全排列 next_permutation()&#xff0c; prev_permutation() #include<bits/stdc.h> using namespace std;int a[10];int main(){for(int i 1; i < 4; i)a[i] i; //4*3*2*1 24bool tag true;while(tag){for(int i1; i < 4; i)cout << a[…

Page 251~254 Win32 GUI项目

win32_gui 源代码&#xff1a; #if defined(UNICODE) && !defined(_UNICODE)#define _UNICODE #elif defined(_UNICODE) && !defined(UNICODE)#define UNICODE #endif#include <tchar.h> #include <windows.h>/* Declare Windows procedure */…

3D软件坐标系速查【左手/右手】

本文介绍不同3D软件的世界坐标系之间的差异及其工作原理。 NSDT工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 基本上&#xff0c;游戏引擎和3…

XSKY SDS 产品率先获得 OceanBase V4 新版本认证

近日&#xff0c;北京奥星贝斯科技有限公司&#xff08;简称&#xff1a;OceanBase&#xff09;与北京星辰天合科技股份有限公司&#xff08;简称&#xff1a;XSKY 星辰天合&#xff09;顺利完成产品兼容性认证。 XSKY 的高性能全闪存储以及混闪存储&#xff0c;与 OceanBase V…

文献阅读:Sparse Low-rank Adaptation of Pre-trained Language Models

文献阅读&#xff1a;Sparse Low-rank Adaptation of Pre-trained Language Models 1. 文章简介2. 具体方法介绍 1. SoRA具体结构2. 阈值选取考察 3. 实验 & 结论 1. 基础实验 1. 实验设置2. 结果分析 2. 细节讨论 1. 稀疏度分析2. rank分析3. 参数位置分析4. 效率考察 4.…

【STM32】STM32学习笔记-DMA数据转运+AD多通道(24)

00. 目录 文章目录 00. 目录01. DMA简介02. DMA相关API2.1 DMA_Init2.2 DMA_InitTypeDef2.3 DMA_Cmd2.4 DMA_SetCurrDataCounter2.5 DMA_GetFlagStatus2.6 DMA_ClearFlag 03. DMA数据单通道接线图04. DMA数据单通道示例05. DMA数据多通道接线图06. DMA数据多通道示例一07. DMA数…

jupyter notebook 配置conda 虚拟环境python

conda创建python环境 conda create -n openvoice python3.9 激活环境 source activate openvoice 在虚拟环境中安装ipykernel pip install ipykernel 添加虚拟环境进到 jupyter notebook python -m ipykernel install --user --name openvoice --display-name openvoice …

base64与BytesIO图片进行编码、解码;api调用

base64与BytesIO简单介绍 io.BytesIO 和 Base64 编码都是用于在内存中处理二进制数据的方法&#xff0c;但它们的目的和使用场景有所不同。 1&#xff09; io.BytesIO io.BytesIO 是 Python io 库中的一个类&#xff0c;它提供了一个在内存中处理二进制数据的接口&#xff0…

Linux-shell简单学习

我是南城余&#xff01;阿里云开发者平台专家博士证书获得者&#xff01; 欢迎关注我的博客&#xff01;一同成长&#xff01; 一名从事运维开发的worker&#xff0c;记录分享学习。 专注于AI&#xff0c;运维开发&#xff0c;windows Linux 系统领域的分享&#xff01; 其他…

Qt6入门教程 4:Qt Creator常用技巧

在上一篇Qt6入门教程 3&#xff1a;创建Hello World项目中&#xff0c;通过创建一个Qt项目&#xff0c;对Qt Creator已经有了比较直观的认识&#xff0c;本文将介绍它的一些常用技巧。 Qt Creator启动后默认显示欢迎页面 创建项目已经用过了&#xff0c;打开项目也很简单&#…