分裂联邦学习论文-混合联邦分裂学习GAN驱动的预测性多目标优化

论文标题:《Predictive GAN-Powered Multi-Objective Optimization for Hybrid Federated Split Learning

期刊:IEEE Transactions on Communications, 2023

一、论文介绍

背景:联邦学习作为一种多设备协同训练的边缘智能算法,可以保护数据隐私,但增加了无线设备的计算负担。

模型:为了解决上述问题,我们提出了一种无线网络的混合联邦分裂学习框架,该框架结合了FL多clients协同训练和SL的灵活分割。为了减少模型分裂中的计算的空闲时间,我们设计了一种不共享标签的模型分裂并行计算方案,并从收敛性上对时延梯度的影响进行理论分析。为了平衡训练时延和能耗,我们通过联合优化分割点决策带宽计算资源分配最小化训练时延和能耗(多目标优化:时延、能耗)。然后,我们提出了一种预测生成对抗网络(GAN)驱动的多目标优化算法来获得问题的帕累托前沿,它利用鉴别器来指导生成器的训练来预测有前途的解决方案。

算法:GAN驱动预测的多目标优化算法

二、系统模型

本文框架包含一个Base Station (BS)和集合\mathcal{K} =\{1,2,...,k,...,K\}表示的客户端,框架如图所示。

图中的神经网络共有L层,且分为3部分进行训练,第一部分:第k个客户端计算1->S_k层。第二部分:边缘服务器计算S_k+1->H_k层。第三部分:客户端计算H_k+1->L层。假设第l层的神经网络前向和反向传播所需的浮点数分别为C_l^FC_l^B

2.1通信和计算模型

1、通信时延-前向传播:两部分的前向传播时延分别为:

T_{k,t}^{UF}=\frac{b_kO_{S_k}^F}{B_k\log(1+\frac{p_kg_{k,t}^2}{B_kN_0} )}  

T_{k,t}^{DF}=\frac{b_kO_{H_k}^F}{B_k\log(1+\frac{p_0g_{k,t}^2}{B_kN_0} )}

其中b_k表示客户端k训练时的batch size,O_{S_k}^F表示第一部分计算后的结果,O_{H_k}^F表示第二部分计算后的结果。两部分的反向传播时延分别为:

T_{k,t}^{UB}=\frac{b_kO_{H_k+1}^B}{B_k\log(1+\frac{p_kg_{k,t}^2}{B_kN_0} )}

T_{k,t}^{DB}=\frac{b_kO_{S_k+1}^B}{B_k\log(1+\frac{p_0g_{k,t}^2}{B_kN_0} )}

其中O_{H_{k+1}}^B表示第三部分反向传播时梯度的大小,O_{S_{k+1}}^B表示第二部分反向传播时梯度的大小。

第二部分前向传播和反向传播的时延为:

T_{k,t}^{EF}=\frac{\sum_{l=S_{k+1}}^{H_k} b_kC_l^F }{f_k^E n^E}

T_{k,t}^{EB}=\frac{\sum_{l=S_{k+1}}^{H_k} b_kC_l^B }{f_k^E n^E}

前面已经对传输过程的时延和边缘服务器的计算时延进行说明。下面分析并行计算时(由上图可知,蓝色--绿色--橙色--黄色为相邻的本地轮次,假设分别为第1,2,3,4轮次。本地训练相邻轮次可以同时进行,对于精度如何影响暂时不知)客户端产生的资源空闲或等待的情况。下面依次进行分析:

了解下面四种情况,主要是知道空闲与等待的发生位置以及原因(I和2说明本地计算能力过高,可能是计算的层数较多。3和4计算能力太低,可能原因是计算的层数较少)。

在Stage I:很明显出现了资源空闲的情况(首先进行第1轮(蓝色)计算,此时在c部分计算完成,资源空闲。因为第2轮(绿色)前向传播未完成)。则在Part C 的最大时间为:

T_{k,t}^1=\max\{T_{k,t}^{UF}+T_{k,t}^{EF}+T_{k,t}^{DF}, \frac{\sum_{H_{k+1}}^L b_k(C_l^F+C_l^B) }{f_k^{max}n_k}\}

其中第三部分的本地计算频率可以自适应设置为f_{k,t}^1=\frac{\sum_{l=H_{k+1}}^1b_k(C_l^F+C_l^B) }{T_{k,t}^1 n_k}

在Stage II: 此时第1轮次(蓝色)进行反向传播,第二轮次(绿色)开始在Part C 处计算。此时也会造成资源空闲,解决的办法则是使得第1轮(蓝色)与第2轮(绿色)的时间最好相等(情况(b))。此时Part C的最大持续时间为:

T_{k,t}^2=\max\{T_{k,t}^{UB}+T_{k,t}^{EB}+T_{k,t}^{DB}, \frac{\sum_{H_{k+1}}^L b_k(C_l^F+C_l^B) }{f_k^{max}n_k}\}

其中第二部分的本地计算频率可以自适应设置为f_{k,t}^2=\frac{\sum_{l=H_{k+1}}^1b_k(C_l^F+C_l^B) }{T_{k,t}^2 n_k}

在Stage III: 此时第1轮次(蓝色)反向传播执行完成,第3(橙色)轮次前向开始计算,当绿色轮次完成时,本地计算资源被占用,需要等待。此时Part a 的最大持续时间为:

T_{k,t}^3=\max\{T_{k,t}^{UB}+T_{k,t}^{EB}+T_{k,t}^{DB}, \frac{\sum_{1}^{S_k} b_k(C_l^F+C_l^B) }{f_k^{max}n_k}\}

其中第三部分的本地计算频率可以自适应设置为f_{k,t}^3=\frac{\sum_{l=1}^{S_k}b_k(C_l^F+C_l^B) }{T_{k,t}^2 n_k}

在Stage IV: 此时第2轮次(绿色)执行完反向传播,第3(橙色)轮未到达,开始计算第4(黄色)轮。第3(橙色)轮等待。Part a 的最大持续时间为:

T_{k,t}^4=\max\{T_{k,t}^{UF}+T_{k,t}^{EF}+T_{k,t}^{DF}, \frac{\sum_{1}^{S_k} b_k(C_l^F+C_l^B) }{f_k^{max}n_k}\}

其中第四部分的本地计算频率可以自适应设置为f_{k,t}^4=\frac{\sum_{l=1}^{S_k}b_k(C_l^F+C_l^B) }{T_{k,t}^4 n_k}

参数的下载和上传时延为

T_{k,t}^{ParD}=\frac{\sum_{l=1}^{S_k}G_l + \sum_{l=H_k+1}^L G_l }{B_k\log(1 + \frac{p_0g_{k,t}^2}{B_kN_0} )}

T_{k,t}^{ParU}=\frac{\sum_{l=1}^{S_k}G_l + \sum_{l=H_k+1}^L G_l }{B_k\log(1 + \frac{p_kg_{k,t}^2}{B_kN_0} )}

因此,对于分裂联邦学习整个训练过程中总的时延和能耗为:

对于只执行联邦学习的客户端而言,其总的时延和能耗为:

其中客户端本地计算资源为f_{k,t}^{nsp}=\frac{e_kD_k\sum_{l=1}^L (C_l^E+C_l^B)}{(T_t^{max}-T_{k,t}^{ParD}-T_{k,t}^{ParU} )n_k}

总的能耗为

2.2优化目标

假设表示优化变量,通过联合优化模型分割决策、服务器的带宽分配和服务器的计算资源分配,实现最小化训练过程中的时延和能耗。

其中V_1(\varphi)=\sum_{t \in \tau}T_t^{max}V_2(\varphi)=\sum_{t \in \tau}E_t^{sum}.

第一个和第二个约束表示已分配的计算资源和带宽的范围,第三个约束表示输入和输出层应该保持在工人上,以保护隐私。且S_kH_k都为整数。该优化问题是非凸的,通常很难得到这类问题的帕累托最优解集。因此,提出了一种基于GAN的多目标优化算法来逼近帕累托最优解集。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/236812.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

D25XB100-ASEMI家用电器整流桥D25XB100

编辑:ll D25XB100-ASEMI家用电器整流桥D25XB100 型号:D25XB100 品牌:ASEMI 封装:GBJ-5(带康铜丝) 平均正向整流电流(Id):25A 最大反向击穿电压(VRM&…

最好的 8 个解锁 Android 手机的应用程序分析

如何解锁我的 Android 手机是一个困扰全球数百万人的问题。有多种Android解锁器可用于解锁手机。用户应确保选择最好的应用程序以轻松满意地完成工作。必须注意的是,数据在解锁手机的整个过程中都是安全可靠的。此类应用程序还应该能够在所有情况下检索数据。 锁屏移…

【STM32】STM32学习笔记-串口发送和接收(27)

00. 目录 文章目录 00. 目录01. 串口简介02. 串口相关API2.1 USART_Init2.2 USART_InitTypeDef2.3 USART_Cmd2.4 USART_SendData2.5 USART_ReceiveData 03. 串口发送接线图04. USB转串口模块05. 串口发送程序示例06. 串口发送支持printf07. 串口发送支持printf_v208. 串口发送和…

Transformer - Attention is all you need 论文阅读

虽然是跑路来NLP,但是还是立flag说要做个project,结果kaggle上的入门project给的例子用的是BERT,还提到这一方法属于transformer,所以大概率读完这一篇之后,会再看BERT的论文这个样子。 在李宏毅的NLP课程中多次提到了…

【MySQL】:掌握SQL中DDL的数据库定义与操作

🎥 屿小夏 : 个人主页 🔥个人专栏 : MySQL从入门到进阶 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一. SQL的分类二. DDL数据库操作2.1 查询所有数据库2.2 查询当前数据库2.3 创建数…

8.云原生存储之Ceph集群

1. 私有云实战之基础环境搭建 2. 云原生实战之kubesphere搭建 3.云原生之kubesphere运维 4. 云原生之kubesphere基础服务搭建 5.云原生安全之kubesphere应用网关配置域名TLS证书 6.云原生之DevOps和CICD 7.云原生之jenkins集成SonarQube 8.云原生存储之Ceph集群 文章目录 为什么…

(超详细)3-YOLOV5改进-添加SE注意力机制

1、在yolov5/models下面新建一个SE.py文件,在里面放入下面的代码 代码如下: import numpy as np import torch from torch import nn from torch.nn import initclass SEAttention(nn.Module):def __init__(self, channel512,reduction16):super()._…

OpenWrt智能路由器Wan PPPoE拨号配置方法

OpenWrt智能路由器的wan PPPoE拨号配置方法和我们常见的不太一样, 需要先找到wan网卡,然后将协议切换为 PPPoE然后才能看到输入上网账号和密码的地方. 首先登录路由器 http://openwrt.lan/ 然后找到 Network --> Interfaces 这里会显示你当前的路由器的所有接口, 选择 …

java求链表中倒数第k个结点

下面我用两种方法求解: 第一种方法:通常我们做这种题就是求出链表的长度length,然后呢length-k的值就是我们要从链表头部走几步就可以了,代码解释: public class Solution {public class ListNode {int val;ListNode…

BitMap源码解析

文章目录 前言数据结构添加与删除操作 JDK中BitSet源码解析重要成员属性初始化添加数据清除数据获取数据size和length方法集合操作:与、或、异或优缺点 前言 为什么称为bitmap? bitmap不仅仅存储介质以及数据结构不同于hashmap,存储的key和v…

selenium模拟浏览器查询导出参考文献

通过使用Selenium和BeautifulSoup,在CNKI网站上,以"知识图谱"为关键词,通过自动化工具在搜索页面提取相关文章信息。点击清楚并全选进行文献导出,随后从导出页面和管理导出的页面提取参考文献。 浏览器及WebDriver下载…

【模块系列】STM32BMP280

前言 最进想练习下I2C的应用,手上好有BMP280也没用过,就看着机翻手册和原版手册,开始嘎嘎写库函数了。库的命名应该还1是比较规范了吧,就是手册对于最终值的计算方式很迷糊,所以现在也不能保证有可靠性啊,大…

2023极客大挑战web小记

拿到题目提示post传参还以为是道签到题 刚开始直接把自己极客大挑战的username以及password怼上去,但是不对。看看F12,有提示。 当一个搜索蜘蛛访问一个站点时,它会首先检查该站点根目录下是否存在robots.txt,如果存在&#xff0c…

24-1-9 bilibilic++音视频

下午两点面试,面试官迟到了一会,面试官人很好,整体面试经历很不错,但是我人太紧张了,基础知识掌握的深度不够,没有深挖, 是做音视频的底层相关的, 实习要求只要每天打卡够九个小时就…

精细微调技术在大型预训练模型优化中的应用

目录 前言1 Delta微调简介2 参数微调的有效性2.1 通用知识的激发2.2 高效的优化手段3 Delta微调的类别3.1 增量式微调3.2 指定式微调3.3 重参数化方法 4 统一不同微调方法4.1 整合多种微调方法4.2 动态调整微调策略4.3 超参数搜索和优化 结语 前言 随着大型预训练模型在自然语…

全网唯一!Matlab周杰伦专辑配色包MJay

前段时间杰伦出了新歌,第一时间听完,感觉没过瘾,便又翻出他以前的作品,想着继续回忆青春。 翻着翻着,突然发现每张专辑封面的配色都别有一番味道,似乎可以搞些事情…… 于是,我默默打开了Matl…

【博士每天一篇论文-理论分析】Dynamical systems, attractors, and neural circuits

阅读时间:2023-11-19 1 介绍 年份:2016 作者:Paul Miller 马萨诸塞州沃尔瑟姆市布兰代斯大学Volen国家复杂系统中心 期刊: F1000Research 引用量:63 这篇论文主要关注神经回路中的动力系统和吸引子。作者指出神经回路…

C# Cad2016二次开发HelloWorld(一)

1 新建类库 二 引用 acdbmgd.dll、acmgd.dll、accoremgd.dll 三 HelloWorld代码 public class Class1{/// <summary>/// 程序入口标识/// </summary>[CommandMethod("HelloWorld")]public void HelloWorld(){Document adoc Autodesk.AutoCAD.Applicatio…

数据结构实战:变位词侦测

文章目录 一、实战概述二、实战步骤&#xff08;一&#xff09;逐个比较法1、编写源程序2、代码解释说明&#xff08;1&#xff09;函数逻辑解释&#xff08;2&#xff09;主程序部分 3、运行程序&#xff0c;查看结果4、计算时间复杂度 &#xff08;二&#xff09;排序比较法1…

设计模式之访问者模式【行为型模式】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档> 学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某…