设计模式之解释器模式【行为型模式】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档> 学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您:
想系统/深入学习某技术知识点…
一个人摸索学习很难坚持,想组团高效学习…
想写博客但无从下手,急需写作干货注入能量…
热爱写作,愿意让自己成为更好的人…

文章目录

  • 前言
  • 一、概述
  • 二、结构
  • 三、案例实现
  • 四、优缺点
  • 五、使用场景
  • 总结


前言

一、概述
二、结构
三、案例实现
四、优缺点
五、使用场景


一、概述

在这里插入图片描述
如上图,设计一个软件用来进行加减计算。我们第一想法就是使用工具类,提供对应的加法和减法的工具方法。

//用于两个整数相加
public static int add(int a,int b){return a + b;
}//用于两个整数相加
public static int add(int a,int b,int c){return a + b + c;
}//用于n个整数相加
public static int add(Integer ... arr) {int sum = 0;for (Integer i : arr) {sum += i;}return sum;
}

上面的形式比较单一、有限,如果形式变化非常多,这就不符合要求,因为加法和减法运算,两个运算符与数值可以有无限种组合方式。比如 1+2+3+4+5、1+2+3-4等等。

显然,现在需要一种翻译识别机器,能够解析由数字以及 + - 符号构成的合法的运算序列。如果把运算符和数字都看作节点的话,能够逐个节点的进行读取解析运算,这就是解释器模式的思维。

定义:

给定一个语言,定义它的文法表示,并定义一个解释器,这个解释器使用该标识来解释语言中的句子。

在解释器模式中,我们需要将待解决的问题,提取出规则,抽象为一种“语言”。比如加减法运算,规则为:由数值和±符号组成的合法序列,“1+3-2” 就是这种语言的句子。

解释器就是要解析出来语句的含义。但是如何描述规则呢?

文法(语法)规则:

文法是用于描述语言的语法结构的形式规则。

expression ::= value | plus | minus
plus ::= expression ‘+’ expression   
minus ::= expression ‘-’ expression  
value ::= integer

注意: 这里的符号“::=”表示“定义为”的意思,竖线 | 表示或,左右的其中一个,引号内为字符本身,引号外为语法。

上面规则描述为 :

表达式可以是一个值,也可以是plus或者minus运算,而plus和minus又是由表达式结合运算符构成,值的类型为整型数。

抽象语法树:

在计算机科学中,抽象语法树(AbstractSyntaxTree,AST),或简称语法树(Syntax tree),是源代码语法结构的一种抽象表示。它以树状的形式表现编程语言的语法结构,树上的每个节点都表示源代码中的一种结构。

用树形来表示符合文法规则的句子。
在这里插入图片描述

二、结构

解释器模式包含以下主要角色。

  • 抽象表达式(Abstract Expression)角色:定义解释器的接口,约定解释器的解释操作,主要包含解释方法 interpret()。

  • 终结符表达式(Terminal Expression)角色:是抽象表达式的子类,用来实现文法中与终结符相关的操作,文法中的每一个终结符都有一个具体终结表达式与之相对应。

  • 非终结符表达式(Nonterminal Expression)角色:也是抽象表达式的子类,用来实现文法中与非终结符相关的操作,文法中的每条规则都对应于一个非终结符表达式。

  • 环境(Context)角色:通常包含各个解释器需要的数据或是公共的功能,一般用来传递被所有解释器共享的数据,后面的解释器可以从这里获取这些值。

  • 客户端(Client):主要任务是将需要分析的句子或表达式转换成使用解释器对象描述的抽象语法树,然后调用解释器的解释方法,当然也可以通过环境角色间接访问解释器的解释方法。

三、案例实现

【例】设计实现加减法的软件
在这里插入图片描述
代码如下:

//抽象角色AbstractExpression
public abstract class AbstractExpression {public abstract int interpret(Context context);
}//终结符表达式角色
public class Value extends AbstractExpression {private int value;public Value(int value) {this.value = value;}@Overridepublic int interpret(Context context) {return value;}@Overridepublic String toString() {return new Integer(value).toString();}
}//非终结符表达式角色  加法表达式
public class Plus extends AbstractExpression {//+号左边的表达式private AbstractExpression left;//+号右边的表达式private AbstractExpression right;public Plus(AbstractExpression left, AbstractExpression right) {this.left = left;this.right = right;}@Overridepublic int interpret(Context context) {//将左边表达式的结果和右边表达式的结果进行相加return left.interpret(context) + right.interpret(context);}@Overridepublic String toString() {return "(" + left.toString() + " + " + right.toString() + ")";}
}///非终结符表达式角色 减法表达式
public class Minus extends AbstractExpression {//-号左边的表达式private AbstractExpression left;//-号右边的表达式private AbstractExpression right;public Minus(AbstractExpression left, AbstractExpression right) {this.left = left;this.right = right;}@Overridepublic int interpret(Context context) {//将左边表达式的结果和右边表达式的结果进行相减return left.interpret(context) - right.interpret(context);}@Overridepublic String toString() {return "(" + left.toString() + " - " + right.toString() + ")";}
}
//终结符表达式角色 变量表达式
public class Variable extends AbstractExpression {//声明存储变量名的成员变量private String name;public Variable(String name) {this.name = name;}@Overridepublic int interpret(Context ctx) {//直接返回变量的值return ctx.getValue(this);}@Overridepublic String toString() {return name;}
}//环境类
public class Context {//定义一个map集合,用来存储变量及对应的值private Map<Variable, Integer> map = new HashMap<Variable, Integer>();//添加变量的功能public void assign(Variable var, Integer value) {map.put(var, value);}public int getValue(Variable var) {Integer value = map.get(var);return value;}
}//测试类
public class Client {public static void main(String[] args) {//创建环境对象Context context = new Context();//创建多个变量对象Variable a = new Variable("a");Variable b = new Variable("b");Variable c = new Variable("c");Variable d = new Variable("d");Variable e = new Variable("e");//Value v = new Value(1);//将变量存储到环境对象中context.assign(a, 1);context.assign(b, 2);context.assign(c, 3);context.assign(d, 4);context.assign(e, 5);//获取抽象语法树AbstractExpression expression = new Minus(new Plus(new Plus(new Plus(a, b), c), d), e);//解释System.out.println(expression + "= " + expression.interpret(context));}
}

在这里插入图片描述

四、优缺点

1,优点:

  • 易于改变和扩展文法。

    由于在解释器模式中使用类来表示语言的文法规则,因此可以通过继承等机制来改变或扩展文法。每一条文法规则都可以表示为一个类,因此可以方便地实现一个简单的语言。

  • 实现文法较为容易。

    在抽象语法树中每一个表达式节点类的实现方式都是相似的,这些类的代码编写都不会特别复杂。

  • 增加新的解释表达式较为方便。

    如果用户需要增加新的解释表达式只需要对应增加一个新的终结符表达式或非终结符表达式类,原有表达式类代码无须修改,符合 “开闭原则”。

2,缺点:

  • 对于复杂文法难以维护。

    在解释器模式中,每一条规则至少需要定义一个类,因此如果一个语言包含太多文法规则,类的个数将会急剧增加,导致系统难以管理和维护。

  • 执行效率较低。

    由于在解释器模式中使用了大量的循环和递归调用,因此在解释较为复杂的句子时其速度很慢,而且代码的调试过程也比较麻烦。

五、使用场景

  • 当语言的文法较为简单,且执行效率不是关键问题时。

  • 当问题重复出现,且可以用一种简单的语言来进行表达时。

  • 当一个语言需要解释执行,并且语言中的句子可以表示为一个抽象语法树的时候。


总结

以上就是设计模式之解释器模式【行为型模式】的相关知识点,希望对你有所帮助。
积跬步以至千里,积怠惰以至深渊。时代在这跟着你一起努力哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/237589.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(南京观海微电子)——色温介绍

色温是表示光线中包含颜色成分的一个计量单位。从理论上说&#xff0c;黑体温度指绝对黑体从绝对零度&#xff08;&#xff0d;273℃&#xff09;开始加温后所呈现的颜色。黑体在受热后&#xff0c;逐渐由黑变红&#xff0c;转黄&#xff0c;发白&#xff0c;最后发出蓝色光。当…

经典目标检测YOLO系列(二)YOLOv2算法详解

经典目标检测YOLO系列(二)YOLOv2算法详解 YOLO-V1以完全端到端的模式实现达到实时水平的目标检测。但是&#xff0c;YOLO-V1为追求速度而牺牲了部分检测精度&#xff0c;在检测速度广受赞誉的同时&#xff0c;其检测精度也饱受诟病。正是由于这个原因&#xff0c;YOLO团队在20…

修改SSH默认端口,使SSH连接更安全

以CentOS7.9为例&#xff1a; 1、修改配置文件 vi /etc/ssh/sshd_config 2、远程电脑可连接&#xff0c;暂时将SELinux关闭 # 查询状态 getenforce # 关闭 setenforce 0 # 开启 setenforce 1 3、SELinux设置&#xff08;如果启用&#xff09;&#xff0c;semanage管理工具安…

Python教程(24)——全方位解析Python中的装饰器

Python装饰器是一种特殊的函数&#xff0c;它接收一个函数作为参数&#xff0c;然后返回一个新的函数&#xff0c;用于扩展或修改原始函数的行为。装饰器提供了一种便捷的方式来在不修改被装饰函数源代码的情况下&#xff0c;增加、修改或包装函数的功能。通俗点说就是尽量不修…

12.2内核空间基于SPI总线的OLED驱动

在内核空间编写SPI设备驱动的要点 在SPI总线控制器的设备树节点下增加SPI设备的设备树节点&#xff0c;节点中必须包含 reg 属性、 compatible 属性、 spi-max-frequency 属性&#xff0c; reg 属性用于描述片选索引&#xff0c; compatible属性用于设备和驱动的匹配&#xff…

【MATLAB源码-第111期】基于matlab的SCMA系统误码率仿真,采用polar码编码,输出误码率曲线。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 SCMA&#xff08;Sparse Code Multiple Access&#xff09;系统是一种先进的多用户多输入多输出&#xff08;MU-MIMO&#xff09;通信系统&#xff0c;它采用了一种独特的多址访问技术&#xff0c;旨在提高无线通信网络的效率…

C语言实现快排核心思想(双指针法)

核心代码&#xff1a; 这就是每一趟快排的实现代码&#xff0c;由上面的动图&#xff0c;我们能知道前后指针法的核心是玩好cur和prev这两个指针&#xff0c;具体的逻辑是cur找比key小的值&#xff0c;找到就prev&#xff0c;然后prev和cur的值就进行交换&#xff0c;但是总不能…

通过shell脚本确定当前平台

shell中的变量OSTYPE存储操作系统的名称&#xff0c;也可以使用uname命令来确认当前所在的平台。 shell中的变量HOSTTYPE存储操作系统的架构。 测试代码如下所示&#xff1a; #! /bin/bashecho "use OSTYPE:" if [[ "$OSTYPE" "linux-gnu&quo…

TypeScript类型挑战:实现RequiredByKeys实用类型

​内置的必填泛型不够灵活&#xff0c;RequiredByKeys 泛型来救场。 为了帮助读者更好地巩固 TypeScript 的知识&#xff0c;我从 Github 上的 type-challenges 库中选择了几十个挑战&#xff0c;与您一起完成类型挑战。 挑战 实现一个通用的 RequiredByKeys<T, K> …

四、Qt 的第一个demo

在上一篇章节里《三、Qt Creator 使用》&#xff0c;我们介绍了如何使用Qt Creator创建一个简单的带窗体的demo&#xff0c;在这一章节里&#xff0c;我们详细讲解一下这个demo的文件组成&#xff0c;及主函数&#xff0c;并在UI上加一些控件&#xff0c;实现一些简单的功能。 …

【面试突击】Java面试底层逻辑(HashMap、ConcurrentHashMap面试实战)

&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308; 欢迎关注公众号&#xff08;通过文章导读关注&#xff1a;【11来了】&#xff09;&#xff0c;及时收到 AI 前沿项目工具及新技术 的推送 发送 资料 可领取 深入理…

js封装根据年月日获取星座效果demo(整理)

//根据年月日获取星座 function getZodiacSign(dateString) {// 用法:const dateStr 2024-01-11;// const zodiacSign getZodiacSign(dateStr);const date new Date(dateString);const month date.getMonth() 1;const day date.getDate();if ((month 1 && day &…

利用Monte Carlo进行数值积分(二)

进步空间很大的算法版本 话说去年6月的一个周六&#xff0c;我很无聊地发了一个帖子&#xff0c;写了一个自己感觉有点无聊的帖子。 Matlab多重积分的两种实现【从六重积分到一百重积分】https://withstand.blog.csdn.net/article/details/127564478 这个帖子居然成了我这种懒…

Video接口介绍

屏库 https://m.panelook.cn/index_cn.php Open LDI, open lvds display interface OpenLDI and LVDS是兼容的&#xff0c; 是一种电平 https://www.ti2k.com/178597.html MIPI DSI/Camera crosLink FPD-LINK(Flat panel display link)是National(TI) LVDS技术&#xff0c; …

NUS CS1101S:SICP JavaScript 描述:五、使用寄存器机进行计算

原文&#xff1a;5 Computing with Register Machines 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 我的目标是表明天堂机器不是一种神圣的生命体&#xff0c;而是一种钟表&#xff08;相信钟表有灵魂属性的人将制造者的荣耀归功于作品&#xff09;&#xff0c;因为…

网络安全B模块(笔记详解)- 漏洞扫描与利用

漏洞扫描与利用 1.通过Kali对服务器场景server2003以半开放式不进行ping的扫描方式并配合a,要求扫描信息输出格式为xml文件格式,从生成扫描结果获取局域网(例如172.16.101.0/24)中存活靶机,以xml格式向指定文件输出信息(使用工具Nmap,使用必须要使用的参数),并将该操…

8. 自定义分页

EmployeeMapper.java自定义接口 /*** <p>* 查询 : 根据lastName查询员工列表&#xff0c;分页显示* </p>** param page 分页对象,xml中可以从里面进行取值,传递参数 Page 即自动分页,必须放在第一位(你可以继承Page实现自己的分页对象)* param lastName 状态* retu…

《工具录》fierce

工具录 1&#xff1a;fierce2&#xff1a;选项介绍3&#xff1a;示例 本文以 kali-linux-2023.3-vmware-amd64 为例。 1&#xff1a;fierce fierce 是开源的网络安全工具&#xff0c;用于进行域名扫描和子域名枚举。 官方网址&#xff1a;https://github.com/mschwager/fierc…

ubuntu20.04安装cuda11.4以及cudnn

系统&#xff1a;ubuntu20.04硬件配置&#xff1a;GPU3080、CPU未知通过《软件和更新》在附加驱动选项中添加了驱动&#xff1a; 1.检查自己电脑支持的cuda nvidia-smi4. 下载cuda11.4.2 wget https://developer.download.nvidia.com/compute/cuda/11.4.2/local_installers/c…