【大厂秘籍】 - Java多线程面试题

Java多线程面试题

友情提示,看完此文,在Java多线程这块,基本上可以吊打面试官了

线程和进程的区别

进程是资源分配的最小单位,线程是CPU调度的最小单位

线程是进程的子集,一个进程可以有很多线程,每条线程并行执行不同的任务。

不同的进程使用不同的内存空间,而所有的线程共享一片相同的内存空间。

每个线程拥有自己独立的程序计数器、虚拟机栈、本地方法栈

创作不易,你的关注分享就是博主更新的最大动力, 每周持续更新
扫描【企鹅君】公众号二维码免费领取最新独家面试资料,还可以第一时间阅读(比博客早两到三篇)

求关注❤️ 求点赞❤️ 求分享❤️ 对博主真的非常重要

该篇已经被GitHub项目收录github.com/JavaDance 欢迎Star和完善

公众号

线程状态

线程状态:

Java 线程在运行的生命周期中的指定时刻只可能处于下面 6 种不同状态的其中一个状态:

  • NEW: 初始状态,线程被创建出来但没有被调用 start()
  • RUNNABLE: 运行状态,线程被调用了 start()等待运行的状态。
  • BLOCKED:阻塞状态,需要等待锁释放。
  • WAITING:等待状态,表示该线程需要等待其他线程做出一些特定动作(通知或中断)。
  • TIME_WAITING:超时等待状态,可以在指定的时间后自行返回而不是像 WAITING 那样一直等待。
  • TERMINATED:终止状态,表示该线程已经运行完毕。

线程在生命周期中并不是固定处于某一个状态而是随着代码的执行在不同状态之间切换。

img

线程状态切换

方法作用区别
start启动线程,由虚拟机自动调度执行run()方法线程处于就绪状态
run线程逻辑代码块处理,JVM调度执行线程处于运行状态
sleep让当前正在执行的线程休眠(暂停执行)不释放锁
wait使得当前线程等待释放同步锁
notify唤醒在此对象监视器上等待的单个线程唤醒单个线程
notifyAll唤醒在此对象监视器上等待的所有线程唤醒多个线程
yiled停止当前线程,让同等优先权的线程运行用Thread类调用
join使当前线程停下来等待,直至另一个调用join方法的线程终止用线程对象调用
img

sleep() 方法和 wait() 方法对比

共同点:两者都可以暂停线程的执行。

区别

  • sleep() 方法没有释放锁,而 wait() 方法释放了锁
  • wait() 通常被用于线程间交互/通信,sleep()通常被用于暂停执行。
  • wait() 方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的 notify()或者 notifyAll() 方法。sleep()方法执行完成后,线程会自动苏醒,或者也可以使用 wait(long timeout) 超时后线程会自动苏醒。
  • sleep()Thread 类的静态本地方法,wait() 则是 Object 类的本地方法。为什么这样设计呢?下一个问题就会聊到。

为什么 wait() 方法不定义在 Thread 中?

wait() 是让获得对象锁的线程实现等待,会自动释放当前线程占有的对象锁。每个对象(Object)都拥有对象锁,既然要释放当前线程占有的对象锁并让其进入 WAITING 状态,自然是要操作对应的对象(Object)而非当前的线程(Thread)。

类似的问题:为什么 sleep() 方法定义在 Thread 中?

因为 sleep() 是让当前线程暂停执行,不涉及到对象类,也不需要获得对象锁。

如何在Java中实现线程

(1)继承Thread类实现多线程

继承Thread类,然后重写run方法.(由于Java单继承的特性,这种方式用的比较少)

public class MyThread extends Thread {public MyThread() {}public void run() {for(int i=0;i<10;i++) {System.out.println(Thread.currentThread()+":"+i);}}public static void main(String[] args) {MyThread mThread1=new MyThread();MyThread mThread2=new MyThread();MyThread myThread3=new MyThread();mThread1.start();mThread2.start();myThread3.start();}
}
(2)实现Runnable()接口,实现其run()方法

推荐此方式。两个特点:

  • a.覆写Runnable接口实现多线程可以避免单继承局限
  • b.实现Runnable()可以更好的体现共享的概念
  • c.当执行目标类实现Runnable接口,此时执行目标(target)类和Thread是代理模式(子类负责真是业务的操作,thread负责资源调度与线程创建辅助真实业务。
public class MyTarget implements Runnable{public static int count=20;public void run() {while(count0) {try {Thread.sleep(200);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName()+"-当前剩余票数:"+count--);}}public static void main(String[] args) {MyThread target=new MyTarget();Thread mThread1=new Thread(target,"线程1");Thread mThread2=new Thread(target,"线程2");Thread mThread3=new Thread(target,"线程3");mThread1.start();mThread2.start();myThread3.start();}
}
(3)实现Callable接口创建多线程

a.执行目标核心方法叫call()方法
b.有返回值

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;public class MyTarget implements Callable<String{private int count = 20;@Overridepublic String call() throws Exception {for (int i = count; i 0; i--) {
//			Thread.yield();System.out.println(Thread.currentThread().getName()+"当前票数:" + i);}return "sale out";} public static void main(String[] args) throws InterruptedException, ExecutionException {Callable<Stringcallable  =new MyTarget();FutureTask <StringfutureTask=new FutureTask<(callable);Thread mThread=new Thread(futureTask);Thread mThread2=new Thread(futureTask);Thread mThread3=new Thread(futureTask);
//		mThread.setName("hhh");mThread.start();mThread2.start();mThread3.start();System.out.println(futureTask.get());}
}
(4)通过线程池创建多线程, 后面讲线程池会讲到

Thread 类中的start() 和 run() 方法有什么区别?

start()方法被用来启动新创建的线程,使该被创建的线程状态变为可运行状态。

当你直接调用run()方法的时候,只会是在原来的线程中调用,没有新的线程启动。只有调用start()方法才会启动新线程。

如果我们调用了Thread的run()方法,它的行为就会和普通的方法一样,直接运行run()方法。为了在新的线程中执行我们的代码,必须使用Thread.start()方法。

什么是线程上下文切换?

线程在执行过程中会有自己的运行条件和状态(也称上下文),比如上文所说到过的程序计数器,栈信息等。当出现如下情况的时候,线程会从占用 CPU 状态中退出。

  • 主动让出 CPU,比如调用了 sleep(), wait() 等。
  • 时间片用完,因为操作系统要防止一个线程或者进程长时间占用 CPU 导致其他线程或者进程饿死。
  • 调用了阻塞类型的系统中断,比如请求 IO,线程被阻塞。
  • 被终止或结束运行

这其中前三种都会发生线程切换,线程切换意味着需要保存当前线程的上下文,留待线程下次占用 CPU 的时候恢复现场。并加载下一个将要占用 CPU 的线程上下文。这就是所谓的 上下文切换

上下文切换是现代操作系统的基本功能,因其每次需要保存信息恢复信息,这将会占用 CPU,内存等系统资源进行处理,也就意味着效率会有一定损耗,如果频繁切换就会造成整体效率低下。

什么是线程死锁?如何避免死锁?

认识线程死锁

线程死锁描述的是这样一种情况:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。

如下图所示,线程 A 持有资源 2,线程 B 持有资源 1,他们同时都想申请对方的资源,所以这两个线程就会互相等待而进入死锁状态。

线程死锁示意图

下面通过一个例子来说明线程死锁,代码模拟了上图的死锁的情况 (代码来源于《并发编程之美》):

public class DeadLockDemo {private static Object resource1 = new Object();//资源 1private static Object resource2 = new Object();//资源 2public static void main(String[] args) {new Thread(() -{synchronized (resource1) {System.out.println(Thread.currentThread() + "get resource1");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread() + "waiting get resource2");synchronized (resource2) {System.out.println(Thread.currentThread() + "get resource2");}}}, "线程 1").start();new Thread(() -{synchronized (resource2) {System.out.println(Thread.currentThread() + "get resource2");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread() + "waiting get resource1");synchronized (resource1) {System.out.println(Thread.currentThread() + "get resource1");}}}, "线程 2").start();}
}

Output

Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1

线程 A 通过 synchronized (resource1) 获得 resource1 的监视器锁,然后通过Thread.sleep(1000);让线程 A 休眠 1s 为的是让线程 B 得到执行然后获取到 resource2 的监视器锁。线程 A 和线程 B 休眠结束了都开始企图请求获取对方的资源,然后这两个线程就会陷入互相等待的状态,这也就产生了死锁。

上面的例子符合产生死锁的四个必要条件:

  1. 互斥条件:该资源任意一个时刻只由一个线程占用。
  2. 请求与保持条件:一个线程因请求资源而阻塞时,对已获得的资源保持不放。
  3. 不剥夺条件:线程已获得的资源在未使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。
  4. 循环等待条件:若干线程之间形成一种头尾相接的循环等待资源关系。

如何预防和避免线程死锁?

如何预防死锁? 破坏死锁的产生的必要条件即可:

  1. 破坏请求与保持条件:一次性申请所有的资源。
  2. 破坏不剥夺条件:占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源。
  3. 破坏循环等待条件:靠按序申请资源来预防。按某一顺序申请资源,释放资源则反序释放。破坏循环等待条件。

如何避免死锁?

避免死锁就是在资源分配时,借助于算法(比如银行家算法)对资源分配进行计算评估,使其进入安全状态。

安全状态 指的是系统能够按照某种线程推进顺序(P1、P2、P3……Pn)来为每个线程分配所需资源,直到满足每个线程对资源的最大需求,使每个线程都可顺利完成。称 <P1、P2、P3.....Pn 序列为安全序列。

我们对线程 2 的代码修改成下面这样就不会产生死锁了。

new Thread(() -{synchronized (resource1) {System.out.println(Thread.currentThread() + "get resource1");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread() + "waiting get resource2");synchronized (resource2) {System.out.println(Thread.currentThread() + "get resource2");}}}, "线程 2").start();

输出:

Thread[线程 1,5,main]get resource1
Thread[线程 1,5,main]waiting get resource2
Thread[线程 1,5,main]get resource2
Thread[线程 2,5,main]get resource1
Thread[线程 2,5,main]waiting get resource2
Thread[线程 2,5,main]get resource2Process finished with exit code 0

我们分析一下上面的代码为什么避免了死锁的发生?

线程 1 首先获得到 resource1 的监视器锁,这时候线程 2 就获取不到了。然后线程 1 再去获取 resource2 的监视器锁,可以获取到。然后线程 1 释放了对 resource1、resource2 的监视器锁的占用,线程 2 获取到就可以执行了。这样就破坏了破坏循环等待条件,因此避免了死锁。

volatile 关键字

如何保证变量的可见性?

在 Java 中,volatile 关键字可以保证变量的可见性,如果我们将变量声明为 volatile ,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。

image-20240113175012465

volatile 关键字能保证数据的可见性,但不能保证数据的原子性。synchronized 关键字两者都能保证。

如何禁止指令重排序?

在 Java 中,volatile 关键字除了可以保证变量的可见性,还有一个重要的作用就是防止 JVM 的指令重排序。 如果我们将变量声明为 volatile ,在对这个变量进行读写操作的时候,会通过插入特定的 内存屏障 的方式来禁止指令重排序。

下面我以一个常见的面试题为例讲解一下 volatile 关键字禁止指令重排序的效果。

面试中面试官经常会说:“单例模式了解吗?来给我手写一下!给我解释一下双重检验锁方式实现单例模式的原理呗!”

双重校验锁实现对象单例(线程安全)

public class Singleton {private volatile static Singleton uniqueInstance;private Singleton() {}public  static Singleton getUniqueInstance() {//先判断对象是否已经实例过,没有实例化过才进入加锁代码if (uniqueInstance == null) {//类对象加锁synchronized (Singleton.class) {if (uniqueInstance == null) {uniqueInstance = new Singleton();}}}return uniqueInstance;}
}

uniqueInstance 采用 volatile 关键字修饰也是很有必要的, uniqueInstance = new Singleton(); 这段代码其实是分为三步执行:

  1. uniqueInstance 分配内存空间
  2. 初始化 uniqueInstance
  3. uniqueInstance 指向分配的内存地址

但是由于 JVM 具有指令重排的特性,执行顺序有可能变成 1-3-2。指令重排在单线程环境下不会出现问题,但是在多线程环境下会导致一个线程获得还没有初始化的实例。例如,线程 T1 执行了 1 和 3,此时 T2 调用 getUniqueInstance() 后发现 uniqueInstance 不为空,因此返回 uniqueInstance,但此时 uniqueInstance 还未被初始化。

volatile 可以保证原子性么?

volatile 关键字能保证变量的可见性,但不能保证对变量的操作是原子性的。

我们通过下面的代码即可证明:

/*** 微信搜 JavaGuide 回复"面试突击"即可免费领取个人原创的 Java 面试手册** @author Guide哥* @date 2022/08/03 13:40**/
public class VolatoleAtomicityDemo {public volatile static int inc = 0;public void increase() {inc++;}public static void main(String[] args) throws InterruptedException {ExecutorService threadPool = Executors.newFixedThreadPool(5);VolatoleAtomicityDemo volatoleAtomicityDemo = new VolatoleAtomicityDemo();for (int i = 0; i < 5; i++) {threadPool.execute(() -{for (int j = 0; j < 500; j++) {volatoleAtomicityDemo.increase();}});}// 等待1.5秒,保证上面程序执行完成Thread.sleep(1500);System.out.println(inc);threadPool.shutdown();}
}

正常情况下,运行上面的代码理应输出 2500。但你真正运行了上面的代码之后,你会发现每次输出结果都小于 2500

为什么会出现这种情况呢?不是说好了,volatile 可以保证变量的可见性嘛!

也就是说,如果 volatile 能保证 inc++ 操作的原子性的话。每个线程中对 inc 变量自增完之后,其他线程可以立即看到修改后的值。5 个线程分别进行了 500 次操作,那么最终 inc 的值应该是 5*500=2500。

很多人会误认为自增操作 inc++ 是原子性的,实际上,inc++ 其实是一个复合操作,包括三步:

  1. 读取 inc 的值。
  2. 对 inc 加 1。
  3. 将 inc 的值写回内存。

volatile 是无法保证这三个操作是具有原子性的,有可能导致下面这种情况出现:

  1. 线程 1 对 inc 进行读取操作之后,还未对其进行修改。线程 2 又读取了 inc的值并对其进行修改(+1),再将inc 的值写回内存。
  2. 线程 2 操作完毕后,线程 1 对 inc的值进行修改(+1),再将inc 的值写回内存。

这也就导致两个线程分别对 inc 进行了一次自增操作后,inc 实际上只增加了 1。

其实,如果想要保证上面的代码运行正确也非常简单,利用 synchronizedLock或者AtomicInteger都可以。

使用 synchronized 改进:

public synchronized void increase() {inc++;
}

使用 AtomicInteger 改进:

public AtomicInteger inc = new AtomicInteger();public void increase() {inc.getAndIncrement();
}

使用 ReentrantLock 改进:

Lock lock = new ReentrantLock();
public void increase() {lock.lock();try {inc++;} finally {lock.unlock();}
}

乐观锁和悲观锁

什么是悲观锁?

悲观锁总是假设最坏的情况,认为共享资源每次被访问的时候就会出现问题(比如共享数据被修改),所以每次在获取资源操作的时候都会上锁,这样其他线程想拿到这个资源就会阻塞直到锁被上一个持有者释放。也就是说,共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程

像 Java 中synchronizedReentrantLock等独占锁就是悲观锁思想的实现。

public void performSynchronisedTask() {synchronized (this) {// 需要同步的操作}
}private Lock lock = new ReentrantLock();
lock.lock();
try {// 需要同步的操作
} finally {lock.unlock();
}

高并发的场景下,激烈的锁竞争会造成线程阻塞,大量阻塞线程会导致系统的上下文切换,增加系统的性能开销。并且,悲观锁还可能会存在死锁问题,影响代码的正常运行。

什么是乐观锁?

乐观锁体现的是悲观锁的反面。它是一种积极的思想,它总是认为数据是不会被修改的,所以是不会对数据上锁的。但是乐观锁在更新的时候会去判断数据是否被更新过。乐观锁的实现方案一般有两种(版本号机制和CAS)。乐观锁适用于读多写少的场景,这样可以提高系统的并发量。在Java中 java.util.concurrent.atomic下的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。
JUC原子类概览

高并发的场景下,乐观锁相比悲观锁来说,不存在锁竞争造成线程阻塞,也不会有死锁的问题,在性能上往往会更胜一筹。但是,如果冲突频繁发生(写占比非常多的情况),会频繁失败和重试,这样同样会非常影响性能,导致 CPU 飙升。

理论上来说:

  • 悲观锁通常多用于写比较多的情况(多写场景,竞争激烈),这样可以避免频繁失败和重试影响性能,悲观锁的开销是固定的。
  • 乐观锁通常多用于写比较少的情况(多读场景,竞争较少),这样可以避免频繁加锁影响性能。不过,乐观锁主要针对的对象是单个共享变量(参考java.util.concurrent.atomic包下面的原子变量类)。

如何实现乐观锁?

乐观锁一般会使用版本号机制或 CAS 算法实现,CAS 算法相对来说更多一些,这里需要格外注意。

版本号机制

一般是在数据表中加上一个数据版本号 version 字段,表示数据被修改的次数。当数据被修改时,version 值会加一。当线程 A 要更新数据值时,在读取数据的同时也会读取 version 值,在提交更新时,若刚才读取到的 version 值为当前数据库中的 version 值相等时才更新,否则重试更新操作,直到更新成功。

举一个简单的例子:假设数据库中帐户信息表中有一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。

  1. 操作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除 $50( $100-$50 )。
  2. 在操作员 A 操作的过程中,操作员 B 也读入此用户信息( version=1 ),并从其帐户余额中扣除 $20 ( $100-$20 )。
  3. 操作员 A 完成了修改工作,将数据版本号( version=1 ),连同帐户扣除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本等于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。
  4. 操作员 B 完成了操作,也将版本号( version=1 )试图向数据库提交数据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的数据版本号为 1 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须等于当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。

这样就避免了操作员 B 用基于 version=1 的旧数据修改的结果覆盖操作员 A 的操作结果的可能。

CAS 算法

CAS 的全称是 Compare And Swap(比较与交换) ,用于实现乐观锁,被广泛应用于各大框架中。CAS 的思想很简单,就是用一个预期值和要更新的变量值进行比较,两值相等才会进行更新。

CAS 是一个原子操作,底层依赖于一条 CPU 的原子指令。

原子操作 即最小不可拆分的操作,也就是说操作一旦开始,就不能被打断,直到操作完成。

CAS 涉及到三个操作数:

  • V:要更新的变量值(Var)
  • E:预期值(Expected)
  • N:拟写入的新值(New)

当且仅当 V 的值等于 E 时,CAS 通过原子方式用新值 N 来更新 V 的值。如果不等,说明已经有其它线程更新了 V,则当前线程放弃更新。

举一个简单的例子:线程 A 要修改变量 i 的值为 6,i 原值为 1(V = 1,E=1,N=6,假设不存在 ABA 问题)。

  1. i 与 1 进行比较,如果相等, 则说明没被其他线程修改,可以被设置为 6 。
  2. i 与 1 进行比较,如果不相等,则说明被其他线程修改,当前线程放弃更新,CAS 操作失败。

当多个线程同时使用 CAS 操作一个变量时,只有一个会胜出,并成功更新,其余均会失败,但失败的线程并不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。

Java 语言并没有直接实现 CAS,CAS 相关的实现是通过 C++ 内联汇编的形式实现的(JNI 调用)。

sun.misc包下的Unsafe类提供了compareAndSwapObjectcompareAndSwapIntcompareAndSwapLong方法来实现的对Objectintlong类型的 CAS 操作

/***  CAS* @param o         包含要修改field的对象* @param offset    对象中某field的偏移量* @param expected  期望值* @param update    更新值* @return          true | false*/
public final native boolean compareAndSwapObject(Object o, long offset,  Object expected, Object update);public final native boolean compareAndSwapInt(Object o, long offset, int expected,int update);public final native boolean compareAndSwapLong(Object o, long offset, long expected, long update);

乐观锁存在哪些问题?

ABA 问题是乐观锁最常见的问题。

ABA 问题

如果一个变量 V 初次读取的时候是 A 值,并且在准备赋值的时候检查到它仍然是 A 值,那我们就能说明它的值没有被其他线程修改过了吗?很明显是不能的,因为在这段时间它的值可能被改为其他值,然后又改回 A,那 CAS 操作就会误认为它从来没有被修改过。这个问题被称为 CAS 操作的 "ABA"问题。

ABA 问题的解决思路是在变量前面追加上版本号或者时间戳。JDK 1.5 以后的 AtomicStampedReference 类就是用来解决 ABA 问题的,其中的 compareAndSet() 方法就是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。

public boolean compareAndSet(V   expectedReference,V   newReference,int expectedStamp,int newStamp) {Pair<Vcurrent = pair;returnexpectedReference == current.reference &&expectedStamp == current.stamp &&((newReference == current.reference &&newStamp == current.stamp) ||casPair(current, Pair.of(newReference, newStamp)));
}
循环时间长开销大

CAS 经常会用到自旋操作来进行重试,也就是不成功就一直循环执行直到成功。如果长时间不成功,会给 CPU 带来非常大的执行开销。

只能保证一个共享变量的原子操作

CAS 只对单个共享变量有效,当操作涉及跨多个共享变量时 CAS 无效。但是从 JDK 1.5 开始,提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行 CAS 操作.所以我们可以使用锁或者利用AtomicReference类把多个共享变量合并成一个共享变量来操作。

synchronized 关键字

synchronized 是什么?有什么用?

synchronized 是 Java 中的一个关键字,翻译成中文是同步的意思,主要解决的是多个线程之间访问资源的同步性,可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。

如何使用 synchronized?

synchronized 关键字的使用方式主要有下面 3 种:

  1. 修饰实例方法
  2. 修饰静态方法
  3. 修饰代码块

1、修饰实例方法 (锁当前对象实例)

给当前对象实例加锁,进入同步代码前要获得 当前对象实例的锁

synchronized void method() {//业务代码
}

2、修饰静态方法 (锁当前类)

给当前类加锁,会作用于类的所有对象实例 ,进入同步代码前要获得 当前 class 的锁

这是因为静态成员不属于任何一个实例对象,归整个类所有,不依赖于类的特定实例,被类的所有实例共享。

synchronized static void method() {//业务代码
}

静态 synchronized 方法和非静态 synchronized 方法之间的调用互斥么?不互斥!如果一个线程 A 调用一个实例对象的非静态 synchronized 方法,而线程 B 需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁。

3、修饰代码块 (锁指定对象/类)

对括号里指定的对象/类加锁:

  • synchronized(object) 表示进入同步代码库前要获得 给定对象的锁
  • synchronized(类.class) 表示进入同步代码前要获得 给定 Class 的锁
synchronized(this) {//业务代码
}

总结:

  • synchronized 关键字加到 static 静态方法和 synchronized(class) 代码块上都是是给 Class 类上锁;
  • synchronized 关键字加到实例方法上是给对象实例上锁;
  • 尽量不要使用 synchronized(String a) 因为 JVM 中,字符串常量池具有缓存功能。

构造方法可以用 synchronized 修饰么?

先说结论:构造方法不能使用 synchronized 关键字修饰。

构造方法本身就属于线程安全的,不存在同步的构造方法一说。

synchronized 底层原理了解吗?

synchronized 关键字底层原理属于 JVM 层面的东西。

synchronized 同步语句块的情况
public class SynchronizedDemo {public void method() {synchronized (this) {System.out.println("synchronized 代码块");}}
}

通过 JDK 自带的 javap 命令查看 SynchronizedDemo 类的相关字节码信息:首先切换到类的对应目录执行 javac SynchronizedDemo.java 命令生成编译后的 .class 文件,然后执行javap -c -s -v -l SynchronizedDemo.class

synchronized关键字原理

从上面我们可以看出:synchronized 同步语句块的实现使用的是 monitorentermonitorexit 指令,其中 monitorenter 指令指向同步代码块的开始位置,monitorexit 指令则指明同步代码块的结束位置。

上面的字节码中包含一个 monitorenter 指令以及两个 monitorexit 指令,这是为了保证锁在同步代码块代码正常执行以及出现异常的这两种情况下都能被正确释放。

当执行 monitorenter 指令时,线程试图获取锁也就是获取 对象监视器 monitor 的持有权。

在 Java 虚拟机(HotSpot)中,Monitor 是基于 C++实现的,由ObjectMonitor实现的。每个对象中都内置了一个 ObjectMonitor对象。

另外,wait/notify等方法也依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。

在执行monitorenter时,会尝试获取对象的锁,如果锁的计数器为 0 则表示锁可以被获取,获取后将锁计数器设为 1 也就是加 1。

执行 monitorenter 获取锁

对象锁的的拥有者线程才可以执行 monitorexit 指令来释放锁。在执行 monitorexit 指令后,将锁计数器设为 0,表明锁被释放,其他线程可以尝试获取锁。

执行 monitorexit 释放锁

如果获取对象锁失败,那当前线程就要阻塞等待,直到锁被另外一个线程释放为止。

synchronized 修饰方法的的情况
public class SynchronizedDemo2 {public synchronized void method() {System.out.println("synchronized 方法");}
}

synchronized关键字原理

synchronized 修饰的方法并没有 monitorenter 指令和 monitorexit 指令,取得代之的确实是 ACC_SYNCHRONIZED 标识,该标识指明了该方法是一个同步方法。JVM 通过该 ACC_SYNCHRONIZED 访问标志来辨别一个方法是否声明为同步方法,从而执行相应的同步调用。

如果是实例方法,JVM 会尝试获取实例对象的锁。如果是静态方法,JVM 会尝试获取当前 class 的锁。

总结

synchronized 同步语句块的实现使用的是 monitorentermonitorexit 指令,其中 monitorenter 指令指向同步代码块的开始位置,monitorexit 指令则指明同步代码块的结束位置。

synchronized 修饰的方法并没有 monitorenter 指令和 monitorexit 指令,取得代之的确实是 ACC_SYNCHRONIZED 标识,该标识指明了该方法是一个同步方法。

不过两者的本质都是对对象监视器 monitor 的获取。

相关推荐:Java 锁与线程的那些事 - 有赞技术团队 。

JDK1.6 之后的 synchronized 底层做了哪些优化?

在 Java 早期版本中,synchronized 属于 重量级锁,效率低下。这是因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock 来实现的,Java 的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高。

不过,在 Java 6 之后, synchronized 引入了大量的优化如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销,这些优化让 synchronized 锁的效率提升了很多。因此, synchronized 还是可以在实际项目中使用的,像 JDK 源码、很多开源框架都大量使用了 synchronized

JDK1.6 对锁的实现引入了大量的优化,如偏向锁、轻量级锁、自旋锁、适应性自旋锁、锁消除、锁粗化等技术来减少锁操作的开销。

锁主要存在四种状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,他们会随着竞争的激烈而逐渐升级。注意锁可以升级不可降级,这种策略是为了提高获得锁和释放锁的效率。

关于这几种优化的详细信息可以查看下面这篇文章:Java6 及以上版本对 synchronized 的优化 。

synchronized 和 volatile 有什么区别?

synchronized 关键字和 volatile 关键字是两个互补的存在,而不是对立的存在!

  • volatile 关键字是线程同步的轻量级实现,所以 volatile性能肯定比synchronized关键字要好 。但是 volatile 关键字只能用于变量而 synchronized 关键字可以修饰方法以及代码块 。
  • volatile 关键字能保证数据的可见性,但不能保证数据的原子性。synchronized 关键字两者都能保证。
  • volatile关键字主要用于解决变量在多个线程之间的可见性,而 synchronized 关键字解决的是多个线程之间访问资源的同步性。

ReentrantLock

ReentrantLock 是什么?

ReentrantLock 实现了 Lock 接口,是一个可重入且独占式的锁,和 synchronized 关键字类似。不过,ReentrantLock 更灵活、更强大,增加了轮询、超时、中断、公平锁和非公平锁等高级功能。

public class ReentrantLock implements Lock, java.io.Serializable {}

ReentrantLock 里面有一个内部类 SyncSync 继承 AQS(AbstractQueuedSynchronizer),添加锁和释放锁的大部分操作实际上都是在 Sync 中实现的。Sync 有公平锁 FairSync 和非公平锁 NonfairSync 两个子类。

ReentrantLock 默认使用非公平锁,也可以通过构造器来显式的指定使用公平锁。

// 传入一个 boolean 值,true 时为公平锁,false 时为非公平锁
public ReentrantLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();
}

从上面的内容可以看出, ReentrantLock 的底层就是由 AQS 来实现的。关于 AQS 的相关内容推荐阅读 AQS 详解 这篇文章。

公平锁和非公平锁有什么区别?

  • 公平锁 : 锁被释放之后,先申请的线程先得到锁。性能较差一些,因为公平锁为了保证时间上的绝对顺序,上下文切换更频繁。
  • 非公平锁:锁被释放之后,后申请的线程可能会先获取到锁,是随机或者按照其他优先级排序的。性能更好,但可能会导致某些线程永远无法获取到锁。

synchronized 和 ReentrantLock 有什么区别?

两者都是可重入锁

可重入锁 也叫递归锁,指的是线程可以再次获取自己的内部锁。比如一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果是不可重入锁的话,就会造成死锁。

JDK 提供的所有现成的 Lock 实现类,包括 synchronized 关键字锁都是可重入的。

在下面的代码中,method1()method2()都被 synchronized 关键字修饰,method1()调用了method2()

public class SynchronizedDemo {public synchronized void method1() {System.out.println("方法1");method2();}public synchronized void method2() {System.out.println("方法2");}
}

由于 synchronized锁是可重入的,同一个线程在调用method1() 时可以直接获得当前对象的锁,执行 method2() 的时候可以再次获取这个对象的锁,不会产生死锁问题。假如synchronized是不可重入锁的话,由于该对象的锁已被当前线程所持有且无法释放,这就导致线程在执行 method2()时获取锁失败,会出现死锁问题。

synchronized 依赖于 JVM 而 ReentrantLock 依赖于 API

synchronized 是依赖于 JVM 实现的,前面我们也讲到了 虚拟机团队在 JDK1.6 为 synchronized 关键字进行了很多优化,但是这些优化都是在虚拟机层面实现的,并没有直接暴露给我们。

ReentrantLock 是 JDK 层面实现的(也就是 API 层面,需要 lock() 和 unlock() 方法配合 try/finally 语句块来完成),所以我们可以通过查看它的源代码,来看它是如何实现的。

ReentrantLock 比 synchronized 增加了一些高级功能

相比synchronizedReentrantLock增加了一些高级功能。主要来说主要有三点:

  • 等待可中断 : ReentrantLock提供了一种能够中断等待锁的线程的机制,通过 lock.lockInterruptibly() 来实现这个机制。也就是说正在等待的线程可以选择放弃等待,改为处理其他事情。
  • 可实现公平锁 : ReentrantLock可以指定是公平锁还是非公平锁。而synchronized只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。ReentrantLock默认情况是非公平的,可以通过 ReentrantLock类的ReentrantLock(boolean fair)构造方法来指定是否是公平的。
  • 可实现选择性通知(锁可以绑定多个条件): synchronized关键字与wait()notify()/notifyAll()方法相结合可以实现等待/通知机制。ReentrantLock类当然也可以实现,但是需要借助于Condition接口与newCondition()方法。

如果你想使用上述功能,那么选择 ReentrantLock 是一个不错的选择。

关于 Condition接口的补充:

Condition是 JDK1.5 之后才有的,它具有很好的灵活性,比如可以实现多路通知功能也就是在一个Lock对象中可以创建多个Condition实例(即对象监视器),线程对象可以注册在指定的Condition中,从而可以有选择性的进行线程通知,在调度线程上更加灵活。 在使用notify()/notifyAll()方法进行通知时,被通知的线程是由 JVM 选择的,用ReentrantLock类结合Condition实例可以实现“选择性通知” ,这个功能非常重要,而且是 Condition 接口默认提供的。而synchronized关键字就相当于整个 Lock 对象中只有一个Condition实例,所有的线程都注册在它一个身上。如果执行notifyAll()方法的话就会通知所有处于等待状态的线程,这样会造成很大的效率问题。而Condition实例的signalAll()方法,只会唤醒注册在该Condition实例中的所有等待线程。

可中断锁和不可中断锁有什么区别?

  • 可中断锁:获取锁的过程中可以被中断,不需要一直等到获取锁之后 才能进行其他逻辑处理。ReentrantLock 就属于是可中断锁。
  • 不可中断锁:一旦线程申请了锁,就只能等到拿到锁以后才能进行其他的逻辑处理。 synchronized 就属于是不可中断锁。

ReentrantReadWriteLock

ReentrantReadWriteLock 在实际项目中使用的并不多,面试中也问的比较少,简单了解即可。JDK 1.8 引入了性能更好的读写锁 StampedLock

ReentrantReadWriteLock 是什么?

ReentrantReadWriteLock 实现了 ReadWriteLock ,是一个可重入的读写锁,既可以保证多个线程同时读的效率,同时又可以保证有写入操作时的线程安全。

public class ReentrantReadWriteLockimplements ReadWriteLock, java.io.Serializable{
}
public interface ReadWriteLock {Lock readLock();Lock writeLock();
}
  • 一般锁进行并发控制的规则:读读互斥、读写互斥、写写互斥。
  • 读写锁进行并发控制的规则:读读不互斥、读写互斥、写写互斥(只有读读不互斥)。

ReentrantReadWriteLock 其实是两把锁,一把是 WriteLock (写锁),一把是 ReadLock(读锁) 。读锁是共享锁,写锁是独占锁。读锁可以被同时读,可以同时被多个线程持有,而写锁最多只能同时被一个线程持有。

ReentrantLock 一样,ReentrantReadWriteLock 底层也是基于 AQS 实现的。

ReentrantReadWriteLock 也支持公平锁和非公平锁,默认使用非公平锁,可以通过构造器来显示的指定。

// 传入一个 boolean 值,true 时为公平锁,false 时为非公平锁
public ReentrantReadWriteLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();readerLock = new ReadLock(this);writerLock = new WriteLock(this);
}

ReentrantReadWriteLock 适合什么场景?

由于 ReentrantReadWriteLock 既可以保证多个线程同时读的效率,同时又可以保证有写入操作时的线程安全。因此,在读多写少的情况下,使用 ReentrantReadWriteLock 能够明显提升系统性能。

共享锁和独占锁有什么区别?

  • 共享锁:一把锁可以被多个线程同时获得。
  • 独占锁:一把锁只能被一个线程获得。

线程持有读锁还能获取写锁吗?

  • 在线程持有读锁的情况下,该线程不能取得写锁(因为获取写锁的时候,如果发现当前的读锁被占用,就马上获取失败,不管读锁是不是被当前线程持有)。
  • 在线程持有写锁的情况下,该线程可以继续获取读锁(获取读锁时如果发现写锁被占用,只有写锁没有被当前线程占用的情况才会获取失败)。

读写锁的源码分析,推荐阅读 聊聊 Java 的几把 JVM 级锁 - 阿里巴巴中间件 这篇文章,写的很不错。

读锁为什么不能升级为写锁?

写锁可以降级为读锁,但是读锁却不能升级为写锁。这是因为读锁升级为写锁会引起线程的争夺,毕竟写锁属于是独占锁,这样的话,会影响性能。

另外,还可能会有死锁问题发生。举个例子:假设两个线程的读锁都想升级写锁,则需要对方都释放自己锁,而双方都不释放,就会产生死锁。

ThreadLocal原理

ThreadLocal简介:

​ 通常情况下,我们创建的变量是可以被任何⼀个线程访问并修改的。如果想实现每⼀个线程都有⾃⼰的
专属本地变量该如何解决呢? JDK中提供的 ThreadLocal 类正是为了解决这样的问题。类似操作系统中的TLAB

原理:

​ 首先 ThreadLocal 是一个泛型类,保证可以接受任何类型的对象。因为一个线程内可以存在多个 ThreadLocal 对象,所以其实是 ThreadLocal 内部维护了一个 Map ,是 ThreadLocal 实现的一个叫做 ThreadLocalMap 的静态内部类。

​ 最终的变量是放在了当前线程的 ThreadLocalMap 中,并不是存在 ThreadLocal 上,ThreadLocal 可以理解为只是ThreadLocalMap的封装,传递了变量值。

​ 我们使用的 get()、set() 方法其实都是调用了这个ThreadLocalMap类对应的 get()、set() 方法。例如下面的

如何使用:

​ 1)存储用户Session

private static final ThreadLocal threadSession = new ThreadLocal();

​ 2)解决线程安全的问题

private static ThreadLocal<SimpleDateFormatformat1 = new ThreadLocal<SimpleDateFormat()

ThreadLocal内存泄漏的场景

​ 实际上 ThreadLocalMap 中使用的 key 为 ThreadLocal 的弱引用,⽽ value 是强引⽤。弱引用的特点是,如果这个对象持有弱引用,那么在下一次垃圾回收的时候必然会被清理掉。

​ 所以如果 ThreadLocal 没有被外部强引用的情况下,在垃圾回收的时候会被清理掉的,这样一来 ThreadLocalMap中使用这个 ThreadLocal 的 key 也会被清理掉。但是,value 是强引用,不会被清理,这样一来就会出现 key 为 null 的 value。 假如我们不做任何措施的话,value 永远⽆法被GC 回收,如果线程长时间不被销毁,可能会产⽣内存泄露。

img

​ ThreadLocalMap实现中已经考虑了这种情况,在调用 set()、get()、remove() 方法的时候,会清理掉 key 为 null 的记录。如果说会出现内存泄漏,那只有在出现了 key 为 null 的记录后,没有手动调用 remove() 方法,并且之后也不再调用 get()、set()、remove() 方法的情况下。因此使⽤完ThreadLocal ⽅法后,最好⼿动调⽤ remove() ⽅法

线程池

优点:通过复用已创建的线程,降低资源损耗、线程可以直接处理队列中的任务加快响应速度、同时便于统一监控和管理

1、线程池构造函数
/**
* 线程池构造函数7大参数
*/
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<RunnableworkQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {}

参数介绍:

参数作用
corePoolSize核心线程池大小
maximumPoolSize最大线程池大小
keepAliveTime线程池中超过 corePoolSize 数目的空闲线程最大存活时间;
TimeUnitkeepAliveTime 时间单位
workQueue阻塞任务队列
threadFactory新建线程工厂
RejectedExecutionHandler拒绝策略。当提交任务数超过 maxmumPoolSize+workQueue 之和时,任务会交给RejectedExecutionHandler 来处理
2、线程处理任务过程:
img
  1. 当线程池小于corePoolSize,新提交任务将创建一个新线程执行任务,即使此时线程池中存在空闲线程。
  2. 当线程池达到corePoolSize时,新提交任务将被放入 workQueue 中,等待线程池中任务调度执行。
  3. 当workQueue已满,且 maximumPoolSize 大于 corePoolSize 时,新提交任务会创建新线程执行任务。
  4. 当提交任务数超过 maximumPoolSize 时,新提交任务由 RejectedExecutionHandler 处理。
  5. 当线程池中超过corePoolSize 线程,空闲时间达到 keepAliveTime 时,关闭空闲线程 。
3、线程拒绝策略
	线程池中的线程已经用完了,无法继续为新任务服务,同时,等待队列也已经排满了,再也塞不下新任务了。这时候我们就需要拒绝策略机制合理的处理这个问题。

JDK 内置的拒绝策略如下:

	**AbortPolicy:**直接抛出异常,阻止系统正常运行。可以根据业务逻辑选择重试或者放弃提交等策略。**CallerRunsPolicy :**只要线程池未关闭,该策略直接在调用者线程中,运行当前被丢弃的任务。不会造成任务丢失,同时减缓提交任务的速度,给执行任务缓冲时间。**DiscardOldestPolicy :**丢弃最老的一个请求,也就是即将被执行的任务,并尝试再次提交当前任务。**DiscardPolicy :**该策略默默地丢弃无法处理的任务,不予任何处理。如果允许任务丢失,这是最好的一种方案。
4、Execuors类实现线程池
img
  • **newSingleThreadExecutor():**只有一个线程的线程池,任务是顺序执行,适用于一个一个任务执行的场景
  • **newCachedThreadPool():**线程池里有很多线程需要同时执行,60s内复用,适用执行很多短期异步的小程序或者负载较轻的服务
  • **newFixedThreadPool():**拥有固定线程数的线程池,如果没有任务执行,那么线程会一直等待,适用执行长期的任务。
  • **newScheduledThreadPool():**用来调度即将执行的任务的线程池
  • newWorkStealingPool():底层采用forkjoin的Deque,采用独立的任务队列可以减少竞争同时加快任务处理
  • img

因为以上方式都存在弊端:

	FixedThreadPool 和 SingleThreadExecutor : 允许请求的**队列⻓度**为 Integer.MAX_VALUE,会导致OOM。CachedThreadPool 和 ScheduledThreadPool : 允许创建的**线程数量**为 Integer.MAX_VALUE,会导致OOM。

手动创建的线程池底层使用的是ArrayBlockingQueue可以防止OOM。

5、线程池大小设置
  • CPU 密集型(n+1)

    CPU 密集的意思是该任务需要大量的运算,而没有阻塞,CPU 一直全速运行。

    CPU 密集型任务尽可能的少的线程数量,一般为 CPU 核数 + 1 个线程的线程池。

  • IO 密集型(2*n)

    由于 IO 密集型任务线程并不是一直在执行任务,可以多分配一点线程数,如 CPU * 2

    也可以使用公式:CPU 核心数 *(1+平均等待时间/平均工作时间)

参考

  • 《深入理解 Java 虚拟机》
  • 《 Java 并发编程》
  • 多线程、Synchronized关键字 - JavaGuide

创作不易,你的关注分享就是博主更新的最大动力, 每周持续更新
微信搜索【企鹅君】关注公众号还能领取独家面试资料喔,并且可以第一时间阅读(比博客早两到三篇)

求关注❤️ 求点赞❤️ 求分享❤️ 对博主真的非常重要

该篇已经被GitHub项目收录github.com/JavaDance 欢迎Star和完善

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/237908.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【办公软件】手机当电脑摄像头Iriun Webcam软件安装与试用

家里电脑是台式的没有摄像头&#xff0c;但老安卓手机有一台。本来想用小爱摄像头做电脑摄像头&#xff0c;但是发现像素有点差&#xff0c;捣鼓了半天没成功。看网上别人都用旧手机来当电脑摄像头&#xff0c;并且也能使用音频&#xff0c;所以还是用旧手机做摄像头比较香。 …

yolov5无人机视频检测与计数系统(创新点和代码)

标题&#xff1a;基于YOLOv5的无人机视频检测与计数系统 摘要&#xff1a; 无人机技术的快速发展和广泛应用给社会带来了巨大的便利&#xff0c;但也带来了一系列的安全隐患。为了实现对无人机的有效管理和监控&#xff0c;本文提出了一种基于YOLOv5的无人机视频检测与计数系…

如何从 Keras 中的深度学习目录加载大型数据集

一、说明 数据集读取&#xff0c;使用、在磁盘上存储和构建图像数据集有一些约定&#xff0c;以便在训练和评估深度学习模型时能够快速高效地加载。本文介绍Keras 深度学习库中的ImageDataGenerator类等工具自动加载训练、测试和验证数据集。 二、ImageDataGenerator加载数据集…

NLP论文阅读记录 - 2022 WOS | 语义提取文本摘要的新方法

文章目录 前言0、论文摘要一、Introduction1.1目标问题1.2相关的尝试1.3本文贡献 二.背景三.本文方法四 实验效果4.1数据集4.2 对比模型4.3实施细节4.4评估指标4.5 实验结果4.6 细粒度分析 五 总结思考 前言 A Novel Approach for Semantic Extractive Text Summarization&…

vue前端开发自学,组件的嵌套关系demo

vue前端开发自学,组件的嵌套关系demo!今天开始分享的&#xff0c;前端开发经常用到的&#xff0c;组件的嵌套关系案例代码。下面先给大家看看&#xff0c;代码执行效果。 如图&#xff0c;这个是代码执行后&#xff0c;的效果布局&#xff01; 下面给大家贴出来源码。方便大家…

02 时间复杂度和空间复杂度

目录 算法效率时间复杂度空间复杂度练习 1. 算法效率 1.1 如何衡量一个算法的好坏 比如裴波那切数列: long long Fib (int N) { if (N < 3) return 1 ; return Fib(N-1) Fib(N -2) ; } 它的递归方式很简洁&#xff0c;但一定好吗&#xff1f;怎么衡量算法的好坏&#xf…

高效学习新编程语言的实践指南

学习一门新的编程语言或框架对于新手和有经验的程序员来说都是一个挑战。然而&#xff0c;通过采用一些有效的策略和方法&#xff0c;我们可以快速入门并掌握新的编程工具。本文将从新手和有编程经验两个不同的角度&#xff0c;分享一些实用的建议和技巧&#xff0c;帮助读者在…

mysql进阶-索引基础

目录 1. 概念-索引是什么&#xff1f; 2. 索引的数据结构(索引模型) 2.1 二分查找&#xff1a; 2.2 二叉查找树&#xff08;BST Binary Search Tree&#xff09;&#xff1a; 2.3 平衡二叉树(AVL Tree Balanced binary search trees) 2.4 多路平衡查找树(B Tree Balanced…

SG-8101CGA 系列 (晶体振荡器 可编程 可用 +125°C )

SG-8101CGA是可编程晶体振荡器&#xff0c;具有CMOS输出&#xff0c;适用于汽车&#xff0c;同时&#xff0c;该系列还提供相同的频率和其他参数的轻松编程能力&#xff0c;符合AEC-Q100标准&#xff0c;具有出色的电磁兼容性和稳定性&#xff0c;可以在各种环境下使用。外部尺…

第六站:C++面向对象

面向对象的第一概念:类 类的构成: “类”&#xff0c;是一种特殊的“数据类型”&#xff0c;不是一个具体的数据。 类的设计: 创建一个类: class Human { public://公有的,对外的void eat();//方法,成员函数void sleep();void play();void work();string getName();//获取对内…

【GitHub项目推荐--克隆你的声音】【转载】

今天推荐一个黑科技开源项目&#xff0c;只需要你 5 秒钟的声音对话&#xff0c;就能克隆出你的声音&#xff0c;而且能够实时的生成你任意语音。 是不是很顶&#xff1f; 我举个例子&#xff0c;如果我这里有 300 条你说话的语音&#xff0c;我把你的语音数据用这个开源项目…

c++ 开发生态环境、工作流程、生命周期-拾遗

拾遗 1 生态环境初识 当您使用Visual Studio 2019进行C开发时&#xff0c;您将进入C生态环境。以下是一些重要的概念和步骤&#xff1a; C程序的结构&#xff1a; 一个典型的C程序包括源文件&#xff08;.cpp&#xff09;、头文件&#xff08;.h&#xff09;、编译后的目标文…

Java 并发性和多线程3

七、线程安全及不可变性 当多个线程同时访问同一个资源&#xff0c;并且其中的一个或者多个线程对这个资源进行了写操作&#xff0c;才会产生竞态条件。多个线程同时读同一个资源不会产生竞态条件。 我们可以通过创建不可变的共享对象来保证对象在线程间共享时不会被修改&…

实战之-Redis代替session实现用户登录

一、设计key的结构 首先我们要思考一下利用redis来存储数据&#xff0c;那么到底使用哪种结构呢&#xff1f;由于存入的数据比较简单&#xff0c;我们可以考虑使用String&#xff0c;或者是使用哈希&#xff0c;如下图&#xff0c;如果使用String&#xff0c;注意他的value&…

AI老照片修复-Bringing-Old-Photos-Back-to-Life

&#x1f3e1; 个人主页&#xff1a;IT贫道-CSDN博客 &#x1f6a9; 私聊博主&#xff1a;私聊博主加WX好友&#xff0c;获取更多资料哦~ &#x1f514; 博主个人B栈地址&#xff1a;豹哥教你学编程的个人空间-豹哥教你学编程个人主页-哔哩哔哩视频 目录 1. AI老照片修复原理-…

第18课 移植FFmpeg和openCV到Android环境

要在Android下从事音视频开发&#xff0c;同样也绕不开ffmpegopencv&#xff0c;不管是初学者还是有一定经验的程序&#xff0c;面临的首要问题就是环境的搭建和库文件的编译配置等问题&#xff0c;特别是初学者&#xff0c;往往会在实际开发前浪费大量的时间来编译ffmpeg及ope…

nvm管理多版本Node.js

nvm管理多版本Node.js 可能大家都曾苦恼于Node环境问题&#xff0c;某个项目需要升版本&#xff0c;某项目又需要降&#xff0c;甚至还出现npm版本与Node对不上的情况。 通过nvm进行版本管理&#xff0c;即可解决。 卸载Node 通过命令行输入node -v命令查看是否已安装Node&…

认知觉醒(九)

认知觉醒(九) 专注力——情绪和智慧的交叉地带 第一节 情绪专注&#xff1a;一招提振你的注意力 用元认知来观察自己的注意力是一件很有意思的事情&#xff0c;相信你可以轻易观察到这种现象&#xff1a;身体做着A&#xff0c;脑子却想着B。 跑步的时候&#xff0c;手脚在…

10.9.2 std::function 存储函数对象 Page184

41行&#xff0c;pending只是inc的复制品&#xff0c;所以43&#xff0c;44行&#xff0c;不会改变inc()的值 demo_function2()的运行结果&#xff1a; 59行&#xff0c;pending是inc的引用&#xff0c;所以61,62行将会改变inc()的值