统计学-R语言-6.1

文章目录

  • 前言
  • 参数估计的原理
    • 总体、样本和统计量
    • 点估计
    • 区间估计
    • 评价估计量的标准
    • 有效性
  • 总体均值的区间估计
    • 一个总体均值的估计(大样本)
    • 一个总体均值的估计(小样本估计)
  • 练习


前言

本篇文章将开始介绍参数估计的相关知识。


参数估计的原理

总体、样本和统计量

在调查居民对延迟退休态度的例子中,每个爱民区居民的态度称为(这个调查问题中的)个体(element, individual, unit),而所有爱民区居民对这个问题的观点称为总体(population)
总体是包含所有要研究的个体的集合。
由于包含的个体数有限,该总体也称为有限总体(finite population)
如果总体包含的个体数是无限或相对无限的,则称为无限总体(infinite population)
调查获得的部分爱民区居民的观点(也就是部分个体)称为该总体的一个样本(sample),它是从总体中选出的一部分。
总体代表我们所关心的那部分现实世界
在大多数情况下,要么总体的规模很大,要么很难确定总体的所有成员,因此需要通过样本信息来推断总体特征
但是,样本虽然含有总体的信息,但是信息一般比较分散,不能直接用于统计推断
为了把分散在样本中的信息集中起来,我们用样本的某个不含总体未知参数的函数来表示,这个函数就称为统计量(statistics)
因此,统计量是对数据的压缩
如果样本的函数包含了未知参数,那这个函数就不是统计量,因为还未完成对数据的压缩。

如果能够估计出参数,那么对总体的具体分布就知道得差不多了。换句话说,不知道总体的特征参数,但可以通过计算样本统计量来估计总体参数。
用于估计参数的统计量称为估计量(estimator)。若得到一组观察值,则将其代入估计量得到的具体数值, 称为参数的估计值。
今后,将不再强调估计量和估计值的区别,在不至于引起混淆的场合统称为估计。

点估计

点估计(point estimation)是用估计量 的某个取值直接作为总体参数θ的估计值。比如:用样本均值 直接作为总体均值μ的估计值;
用样本比例p直接作为总体比例的估计值,等等。

比如:从软件行业从业人员中抽出一个随机样本,计算出平均月收入为18000元,用18000元作为该行业从业人员月平均收入的一个估计值,这就是点估计。

比如:要估计一批产品的合格率,根据样本计算的合格率为98%,将98%直接作为这批产品合格率的估计值,这也是点估计。

由于点估计无法得到估计的可靠性(因为一个点估计量的可靠性是由其抽样分布的标准误来衡量的),也无法说出点估计值与总体参数真实值接近的程度,因此,我们不能完全依赖一个点估计,而应围绕点估计值构造出总体参数的一个区间。

区间估计

区间估计(interval estimate)是在点估计的基础上,给出总体参数估计的一个估计区间,该区间由样本统计量加减估计误差而得到。
根据样本统计量的抽样分布能够对样本统计量与总体参数的接近程度给出一个概率度量。
比如,某班级平均分数在75~85之间,置信水平是95% 。

在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间(confidence interval,CI),其中区间的最小值称为置信下限,最大值称为置信上限。
置信区间中包含总体参数真值的次数所占的比例称为置信水平,也称为置信度或置信系数(confidence coefficient)。统计上,常用的置信水平有90%,95%和99%。有关置信区间的概念可用下面的图来表示:
在这里插入图片描述
对于固定的样本量,置信水平越大,包含总体均值的区间就越多(上下比较)
对于同样的置信水平,样本量n大的, 区间往往就短些(左右比较)
在每个图内部的各个置信区间的长短也不一样,因为样本标准差因样本 而异,这也影响了置信区间的宽度。
在这里插入图片描述
样本量相同时,置信水平越大,置信区间就越宽。置信水平相同时,样本量越大,置信区间就越窄。

使用一个较大的置信水平会得到一个比较宽的置信区间,而使用一个较大的样本则会得到一个较准确(较窄)的区间。直观地说,较宽的区间会有更大的可能性包含参数
但实际应用中,过宽的区间往往没有实际意义。

区间估计的两个端点都是统计量,因而也都是随机变量
“某总体参数μ的置信度为100 1− 𝜶 %的置信区间”意味着如果抽取(相同样本量)的大量样本,那么,从这些样本中 得到的以同样方法(或公式)计算的大量区间中会有大约𝟏− 𝜶比例的区间包含未知的总体参数𝝁,而有约𝜶比例的区间不包含该总体参数
具体的从一个样本中计算出来的一个数值区间,比如前面的(75,85),则要么包含真实比例,要么不包含真实比例。
由于真实比例和这个区间(75,85)都是确定的数,不包括随机性,也没有概率可言。因此,“95%置信区间(75,85)以概率0.95包含真实比例”的说法是正确的还是错误的?
该种说法是错误的。

评价估计量的标准

用于估计总体参数θ的估计量 可以有很多。
如:可以用样本均值作为总体均值的估计量
也可以用样本中位数作为总体均值的估计量,等等。
那么,究竟用哪种估计量作为总体参数的估计呢?什么样的估计量才算是一个好的估计量呢?这就需要有一定的评价标准。统计学家给出了评价估计量的一些标准,主要有以下几个。
无偏性、有效性、一致性。

在这里插入图片描述
无偏性(unbiasedness)是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为 在这里插入图片描述,所选择的估计量为 在这里插入图片描述 ,如果 在这里插入图片描述,则称 在这里插入图片描述在这里插入图片描述的无偏估计量。

在这里插入图片描述
由统计量的抽样分布可知,E( )=μ,E(p)=π,E( )= ,因此 、p、 分别是总体均值μ、总体比例、总体方差的无偏估计量。

样本均值、样本中位数和样本方差的无偏性模拟
假定从均值为50、方差为100的正态总体中随机抽取10000组样本量为10的样本,分别计算出10000个样本均值的均值样本中位数的均值和样本方差的均值
注:函数vector()用于产生一个空向量。函数append(x, values, after = length(x))在向量x中追加数值,after指定在哪个数据后插入数值。

x<-vector();m<-vector();v<-vector()n=10
for(i in 1:10000){
x<-append(x,mean(rnorm(n,50,10)))
m<-append(m,median(rnorm(n,50,10)))
v<-append(v,var(rnorm(n,50,10)))
}
data.frame(mean(x),mean(m),mean(v))

在这里插入图片描述

在正态总体条件下,样本均值和样本中位数都是总体均值的无偏估计量,而样本方差则是总体方差的无偏估计量。
在这里插入图片描述
在这里插入图片描述

有效性

无偏性对估计量而言是很基本的要求,它的直观意义是没有系统误差。
一个好的估计量应当对参数的平均偏差比较小。
第二个标准就是无偏估计量中取方差最小的估计量,也称为最有效或者最好的估计量。换句话说,这就是当样本变化时,该统计量变化最小
方差小,说明由许多样本产生的各个估计量之间差别较小 。
在这里插入图片描述

衡量估计量好坏的第三个标准是一致性或相合性 (consistency)
它意味着样本量越大,估计量对总体参数的估计就越精确(统计量收敛于所估总体的参数)
当样本容量越大时,信息越多,当然估计就应该越准确
在这里插入图片描述
假定总体是均值为50、方差为100的1000正态随机数,从该总体分别抽取样本量为10,100,500,900的样本,并计算出每个样本的均值:

计算样本量分别为10、100、500、900时的样本均值

 N=rnorm(1000,50,10)mu=mean(N)xbar10<-mean(sample(N,10,replace=F))xbar100<-mean(sample(N,100,replace=F))xbar500<-mean(sample(N,500,replace=F))xbar900<-mean(sample(N,900,replace=F))data.frame(总体均值=mu,xbar10,xbar100,xbar500,xbar900)

在这里插入图片描述
计算样本均值与总体均值mu的差值d

data.frame("d10"=(xbar10-mu),"d100"=(xbar100-mu),"d500"=(xbar500-mu),"d900"=(xbar900-mu))

在这里插入图片描述
样本均值随着样本量的增大而越来越接近总体均值。

总体均值的区间估计

一个总体均值的估计(大样本)

一个总体均值区间的一般表达式:
总体均值的置信区间是由样本均值加减估计误差得到的
估计误差由两部分组成:一是点估计量的标准误,它取决于样本统计量的抽样分布。二是估计时所要的求置信水平,统计量分布两侧面积对应的分位数值,它取决于事先所要求的可靠程度
总体均值在置信水平下的置信区间可一般性地表达为
样本均值±分位数×样本均值的标准误。
在大样本(n≥30)情形下,由中心极限定理可知,样本均值近似服从期望值为μ、方差为 的正态分布。
使用正态分布统计量 z在这里插入图片描述
总体均值 在这里插入图片描述在1-在这里插入图片描述置信水平下的置信区间为

在这里插入图片描述
是事先确定的一个概率值,它是总体均值不包括在置信区间内的概率;
(1- 在这里插入图片描述)称为置信水平;
z  /2是标准正态分布两侧面积各为 在这里插入图片描述/2时的z值;
在这里插入图片描述是估计误差。

可以看出:
置信区间的上下界是统计量,因此该区间是随机区间。
从上面的推导可以看出, 置信度是该随机区间覆盖真实均值的概率。
如果根据一个样本的数据算出上下界的实现值,就不是随机区间了,而是一个固定的数值区间。

例题:
一家研究机构随机抽取40辆相同排气量的家用轿车,经过测试得到每百公里耗油量数据(单位:升) 。建立该排气量轿车平均耗油量的90%的置信区间
example5_1
在这里插入图片描述
注:函数z.test(x,y=NULL,sigma.x=NULL,sima.y=NULL,conf. level=0.95)用于构建基于标准正态分布的单样本和双样本的置信区间和假设检验。参数y=NULL用于单样本; sigma.x和 sigma.y用于指定两个总体的标准差,当总体标准差未知时用样本标准差代替;conf.level用于指定置信水平,默认为0.95.
平均耗油量的90%的置信区间(使用z.test函数)

load("C:/example/ch5/example5_1.RData")
library(BSDA) 
z.test(example5_1$耗油量,sigma.x=sd(example5_1$耗油量),conf.level=0.90) 

在这里插入图片描述
只输出置信区间的信息
z.test(example5_1 耗油量 , s i g m a . x = s d ( e x a m p l e 5 1 耗油量,sigma.x=sd(example5_1 耗油量,sigma.x=sd(example51耗油量),conf.level=0.90)$conf.int
在这里插入图片描述

一个总体均值的估计(小样本估计)

假定条件(对总体均值的估计)
总体服从正态分布
小样本 (n < 30)
如果正态总体的σ已知,样本均值经过标准化后仍然服从标准正态分布,此时可使用 建立总体均值的置信区间
如果正态总体的σ未知,样本均值经过标准化后则服从自由度为n-1的t分布,此时使用 t 分布统计量
在这里插入图片描述

总体均值 在1-置信水平下的置信区间为
在这里插入图片描述
例题:
(数据:example5_2.Rdata)从一批袋装食品中随机抽取25袋,测得每袋重量如下表所示。假定食品重量服从正态分布,估计该批食品平均重量的置信区间,置信水平为95%。
总体服从正态分布但σ未知,由于是小样本,样本均值经标准化后服从自由度为n-1的t分布。

在这里插入图片描述
注:t.test(x,y=NULL,mu=0, paired=FALSE,var.equal=FALSE)用于单样本和双样本假设检验。参数y=NULL用于单样本;独立样本时, paired=FALSE;方差不等时,var equal=FALSE。
食品平均重量95%的置信区间(使用t.test函数)

load("C:/example/ch5/example5_2.RData")
t.test(example5_2,conf.level=0.95)

在这里插入图片描述

只输出置信区间的信息

t.test(example5_2)$conf.int

在这里插入图片描述


练习

1、假定从均值为0、方差为1的正态总体中随机抽取10000组样本量为10的样本,如何来计算出10000个样本均值的方差和样本中位数的方差?从结果当中我们又能得到什么结论?

x<-vector();m<-vector()
n=10
for(i in 1:10000){x<-append(x,mean(rnorm(n)))
m<-append(m,median(rnorm(n)))
}
data.frame(var(x),var(m))

2、某快餐店想要估计每位顾客午餐平均花费的金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本,得到样本均值为120元,标准差为15元。求总体均值μ的95%的置信区间。
用公式计算

q<-qnorm(0.975)
LCI<-120-q*(15/sqrt(49))
UCI<-120+q*(15/sqrt(49))
data.frame(LCI,UCI)

在这里插入图片描述

3、利用下面的信息,构建总体均值μ的置信区间。
(1)总体服从正态分布,已知σ=500,n=15, =8900,置信水平为95%。
用公式计算
在这里插入图片描述

q<-qnorm(0.975)
LCI<-8900-q*(500/sqrt(15))
UCL<-8900+q*(500/sqrt(15))
data.frame(LCI,UCI)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/241474.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

新手入门Java第二阶段 封装概念及包、访问修饰符和static修饰符介绍

第三章 封装 课前回顾 1.带参方法如何定义 访问修饰符 返回值类型 方法名(参数列表){//形式参数列表}对象名.方法名(实参列表);2.方法的参数是如何传递的 在java中&#xff0c;方法参数的传递都是值传递。只是基本数据类型作为参数传递时&#xff0c;传递的是值的拷贝。引用…

Linux--磁盘与文件系统

目录 1.什么是文件系统 2.磁盘 2.1什么时磁盘 2.2磁盘的物理存储结构 2.3磁盘的逻辑抽象结构 3.磁盘文件系统&#xff08;EXT2&#xff09; inode Table(i结点表) Data Block inode Bitmap(inode位图) Block Bitmap(块位图) 在Linux如何删除文件 Group Descriptor Ta…

C++类相关oj题目分享(计算日期到天数转换、日期差值、打印日期、日期累加)

文章目录 1.计算日期到天数转换题目详情代码思路 2.KY111 日期差值题目详情代码思路 3.KY222 打印日期题目详情代码 4.KY258 日期累加题目详情代码思路 1.计算日期到天数转换 传送门 题目详情 代码 #include <iostream> using namespace std; int GetDay(int year,int…

【创作活动】ChatGPT 和文心一言哪个更好用?

文章目录 文心一言优点缺点 ChatGPT优点缺点 Java编码能力比较对人工智能的看法 ChatGPT是由OpenAI开发的交互式AI大模型&#xff0c; 文心一言是由百度研发的知识增强大语言模型&#xff0c;本文从Java开发的角度对比一下哪个更好用&#xff08;本文仅用于投稿CSDN创造活动&am…

虚拟线程探索与实践

优质博文&#xff1a;IT-BLOG-CN 一、简介 虚拟线程是轻量级线程&#xff0c;极大地减少了编写、维护和观察高吞吐量并发应用的工作量。虚拟线程是由JEP 425提出的预览功能&#xff0c;并在JDK 19中发布&#xff0c;JDK 21中最终确定虚拟线程&#xff0c;以下是根据开发者反馈…

中小企业股权质押融资(下)

股权质押融资的主要风险 由于股权资产的特殊性&#xff0c;较固定资产抵押和质押、第三方担保等方式&#xff0c;股权质押融资风险易受企业经营状况等因素的影响&#xff0c;主要包括股权价值下跌的风险、股权质押的道德风险、股权处置风险以及现行法律不完善导致的法律风险。…

30分钟带你深入优化安卓Bitmap大图

30分钟带你源码深入了解Bitmap以及优化安卓大图 一、前言二、Bitmap入门1. 如何创建Bitmap?2. Bitmap的堆内存分布在哪里3. 图片文件越大&#xff0c;Bitmap堆内存会越大吗&#xff1f;4. 如何管理Bitmap的内存&#xff1f;5. 实战修改Bitmap的堆内存&#xff0c;改变图片的图…

一万六千字大章:Chrome 浏览器插件 V3 版本 Manifest.json 文件全字段解析

Chrome 浏览器插件 V3 版本 Manifest.json 文件全字段解析 Manifest.json 文件格式 每个扩展程序的根目录中都必须有一个 manifest.json 文件&#xff0c;其中列出了有关该扩展程序的结构和行为的重要信息。 1、Demo 展示 1. 最小文件 {"manifest_version": 3,&quo…

【算法与数据结构】Java实现查找与排序

文章目录 第一部分&#xff1a;查找算法二分查找插值查找分块查找哈希查找树表查找 第二部分&#xff1a;排序算法冒泡排序选择排序插入排序快速排序 总结 第一部分&#xff1a;查找算法 二分查找 也叫做折半查找&#xff0c;属于有序查找算法。 前提条件&#xff1a;数组数据…

C#MQTT编程07--MQTT服务器和客户端(wpf版)

1、前言 上篇完成了winform版的mqtt服务器和客户端&#xff0c;实现了订阅和发布&#xff0c;效果666&#xff0c;长这样 这节要做的wpf版&#xff0c;长这样&#xff0c;效果也是帅BBBB帅&#xff0c;wpf技术是cs程序软件的福音。 wpf的基础知识和案例项目可以看我的另一个专…

使用Python的pygame库实现下雪的效果

使用Python的pygame库实现下雪的效果 关于Python中pygame游戏模块的安装使用可见 https://blog.csdn.net/cnds123/article/details/119514520 先给出效果图&#xff1a; 源码如下&#xff1a; import pygame import random# 初始化pygame pygame.init()# 设置屏幕尺寸 width…

用Python优雅地写出数学表达式的LaTeX代码

用Python优雅地写出数学表达式的LaTeX代码 目录 Latexify LaTeX 安装方法 版本要求 使用方法 实例一 实例二 实例三 实例四 实例五 Latexify Latexify是一个Python库&#xff0c;它可以将数学表达式转换为LaTeX代码。通过使用latexify-py&#xff0c;可以将数学表达…

传统语音识别系统流程

文章目录 概述语音识别原理公式语音识别术语&#xff1a;分帧提取声学特征声学模型 概述 语音识别传统方法主要分两个阶段&#xff1a;训练和识别&#xff0c;训练阶段主要是生成声学模型和语言模型给识别阶段用。传统方法主要有五大模块组成&#xff0c;分别是特征提取&#…

java使用jsch处理软链接判断是否文件夹

前言 这一次主要是碰到一个问题。因为使用jsch去读取文件的时候&#xff0c;有一些文件它是使用软链接制作的一个映射。因为这里面有一个问题。如果它是软链接你就无法判断他到底是文件。还是文件夹&#xff1f;因为他没有提供可以直接读取的方法&#xff0c;用权限信息去判断…

vue2使用 element表格展开功能渲染子表格

默认样式 修改后 样式2 <el-table :data"needDataFollow" border style"width: 100%"><el-table-column align"center" label"序号" type"index" width"80" /><el-table-column align"cent…

64.Spring事件监听的核心机制是什么?

Spring事件监听的核心机制是什么? spring的事件监听有三个部分组成 事件(ApplicationEvent) 负责对应相应监听器 事件源发生某事件是特定事件监听器被触发的原因监听器(ApplicationListener) 对应于观察者模式中的观察者。监听器监听特定事件,并在内部定义了事件发生后的响应…

关于java中的Super详解

关于java中的Super详解 我们在上一篇文章中了解到了面向对象三大基本特征&#xff0c;继承&#xff0c;我们本篇文章中来了解一下Super&#x1f600;。 一、Super和this调用属性 this&#xff1a;当前类中使用。super&#xff1a;父类使用。 我们直接用代码来说明一下。 1…

如何使用JS逆向爬取网站数据

引言&#xff1a; JS逆向是指利用编程技术对网站上的JavaScript代码进行逆向分析&#xff0c;从而实现对网站数据的抓取和分析。这种技术在网络数据采集和分析中具有重要的应用价值&#xff0c;能够帮助程序员获取网站上的有用信息&#xff0c;并进行进一步的处理和分析。 基…

windows vscode jsoncpp cmake c++ 构建项目

jsoncpp的编译和使用推荐文章&#xff1a;jsoncpp的编译和使用 | 爱编程的大丙 (subingwen.cn)https://www.subingwen.cn/cpp/jsoncpp/从这个链接下载jsoncpp-master&#xff1a;https://github.com/open-source-parsers/jsoncpp 可以把这个文件夹名字改成jsoncpp&#xff0c;…

探索设计模式的魅力:“感受单例模式的力量与神秘” - 掌握编程的王牌技巧

在软件开发的赛场上&#xff0c;单例模式以其独特的魅力长期占据着重要的地位。作为设计模式中的一员&#xff0c;它在整个软件工程的棋盘上扮演着关键性角色。本文将带你深入探索单例模式的神秘面纱&#xff0c;从历史渊源到现代应用&#xff0c;从基础实现到高级技巧&#xf…