Golang 中如何实现 Set

在这里插入图片描述

在Go编程中,数据结构的选择对解决问题至关重要。本文将探讨如何在 GO 中实现 set 和 bitset 两种数据结构,以及它们在Go中的应用场景。

Go 的数据结构

Go 内置的数据结构并不多。工作中,我们最常用的两种数据结构分别是 slice 和 map,即切片和映射。 其实,Go 中也有数组,切片的底层就是数组,只不过因为切片的存在,我们平时很少使用它。

除了 Go 内置的数据结构,还有一些数据结构是由 Go 的官方 container 包提供,如 heap 堆、list 双向链表和ring 回环链表。但今天我们不讲它们,这些数据结构,对于熟手来说,看看文档就会使用了。

我们今天将来聊的是 set 和 bitset。据我所知,其他一些语言,比如 Java,是有这两种数据结构。但 Go 当前还没有以任何形式提供。

实现思路

先来看一篇文章,访问地址 2 basic set implementations 阅读。文中介绍了两种 go 实现 set 的思路, 分别是 map 和 bitset。

有兴趣可以读读这篇文章,我们接下来具体介绍下。

map

我们知道,map 的 key 肯定是唯一的,而这恰好与 set 的特性一致,天然保证 set 中成员的唯一性。而且通过 map 实现 set,在检查是否存在某个元素时可直接使用 _, ok := m[key] 的语法,效率高。

先来看一个简单的实现,如下:

set := make(map[string]bool) // New empty set
set["Foo"] = true            // Add
for k := range set {         // Loopfmt.Println(k)
}
delete(set, "Foo")    // Delete
size := len(set)      // Size
exists := set["Foo"]  // Membership

通过创建 map[string]bool 来存储 string 的集合,比较容易理解。但这里还有个问题,map 的 value 是布尔类型,这会导致 set 多占一定内存空间,而 set 不该有这个问题。

怎么解决这个问题?

设置 value 为空结构体,在 Go 中,空结构体不占任何内存。当然,如果不确定,也可以来证明下这个结论。

unsafe.Sizeof(struct{}{}) // 结果为 0

优化后的代码,如下:

type void struct{}
var member voidset := make(map[string]void) // New empty set
set["Foo"] = member          // Add
for k := range set {         // Loopfmt.Println(k)
}
delete(set, "Foo")      // Delete
size := len(set)        // Size
_, exists := set["Foo"] // Membership

之前在网上看到有人按这个思路做了封装,还写了一篇文章,可以去读一下。

其实,github 上已经有个成熟的包,名为 golang-set,它也是采用这个思路实现的。访问地址 golang-set,描述中说 Docker 用的也是它。包中提供了两种 set 实现,线程安全的 set 和非线程安全的 set。

演示一个简单的案例。

package mainimport ("fmt"mapset "github.com/deckarep/golang-set"
)func main() {// 默认创建的线程安全的,如果无需线程安全// 可以使用 NewThreadUnsafeSet 创建,使用方法都是一样的。s1 := mapset.NewSet(1, 2, 3, 4)fmt.Println("s1 contains 3: ", s1.Contains(3))fmt.Println("s1 contains 5: ", s1.Contains(5))// interface 参数,可以传递任意类型s1.Add("poloxue")fmt.Println("s1 contains poloxue: ", s1.Contains("poloxue"))s1.Remove(3)fmt.Println("s1 contains 3: ", s1.Contains(3))s2 := mapset.NewSet(1, 3, 4, 5)// 并集fmt.Println(s1.Union(s2))
}

输出如下:

s1 contains 3:  true
s1 contains 5:  false
s1 contains poloxue:  true
s1 contains 3:  false
Set{4, polxue, 1, 2, 3, 5}

例子中演示了简单的使用方式,如果有不明白的,看下源码,这些数据结构的操作方法名都是很常见的,比如交集 Intersect、差集 Difference 等,一看就懂。

bitset

继续聊聊 bitset,bitset 中每个数子用一个 bit 即能表示,对于一个 int8 的数字,我们可以用它表示 8 个数字,能帮助我们大大节省数据的存储空间。

bitset 最常见的应用有 bitmap 和 flag,即位图和标志位。这里,我们先尝试用它表示一些操作的标志位。比如某个场景,我们需要三个 flag 分别表示权限1、权限2和权限3,而且几个权限可以共存。我们可以分别用三个常量 F1、F2、F3 表示位 Mask。

示例代码如下(引用自文章 Bitmasks, bitsets and flags):

type Bits uint8const (F0 Bits = 1 << iotaF1F2
)func Set(b, flag Bits) Bits    { return b | flag }
func Clear(b, flag Bits) Bits  { return b &^ flag }
func Toggle(b, flag Bits) Bits { return b ^ flag }
func Has(b, flag Bits) bool    { return b&flag != 0 }func main() {var b Bitsb = Set(b, F0)b = Toggle(b, F2)for i, flag := range []Bits{F0, F1, F2} {fmt.Println(i, Has(b, flag))}
}

例子中,我们本来需要三个数才能表示这三个标志,但现在通过一个 uint8 就可以。bitset 的一些操作,如设置 Set、清除 Clear、切换 Toggle、检查 Has 通过位运算就可以实现,而且非常高效。

bitset 对集合操作有着天然的优势,直接通过位运算符便可实现。比如交集、并集、和差集,示例如下:

  • 交集:a & b
  • 并集:a | b
  • 差集:a & (~b)

底层的语言、库、框架常会使用这种方式设置标志位。

以上的例子中只展示了少量数据的处理方式,uint8 占 8 bit 空间,只能表示 8 个数字。那大数据场景能否可以使用这套思路呢?

我们可以把 bitset 和 Go 中的切片结合起来,重新定义 Bits 类型,如下:

type Bitset struct {data []int64
}

但如此也会产生一些问题,设置 bit,我们怎么知道它在哪里呢?仔细想想,这个位置信息包含两部分,即保存该 bit 的数在切片索引位置和该 bit 在数字中的哪位,分别将它们命名为 index 和 position。那怎么获取?

index 可以通过整除获取,比如我们想知道表示 65 的 bit 在切片的哪个 index,通过 65 / 64 即可获得,如果为了高效,也可以用位运算实现,即用移位替换除法,比如 65 >> 6,6 表示移位偏移,即 2^n = 64 的 n。

postion 是除法的余数,我们可以通过模运算获得,比如 65 % 64 = 1,同样为了效率,也有相应的位运算实现,比如 65 & 0b00111111,即 65 & 63。

一个简单例子,如下:

package mainimport ("fmt"
)const (shift = 6mask  = 0x3f // 即0b00111111
)type Bitset struct {data []int64
}func NewBitSet(n int) *Bitset {// 获取位置信息index := n >> shiftset := &Bitset{data: make([]int64, index+1),}// 根据 n 设置 bitsetset.data[index] |= 1 << uint(n&mask)return set
}func (set *Bitset) Contains(n int) bool {// 获取位置信息index := n >> shiftreturn set.data[index]&(1<<uint(n&mask)) != 0
}func main() {set := NewBitSet(65)fmt.Println("set contains 65", set.Contains(65))fmt.Println("set contains 64", set.Contains(64))
}

输出结果

set contains 65 true
set contains 64 false

以上的例子功能很简单,只是为了演示,只有创建 bitset 和 contains 两个功能,其他诸如添加、删除、不同 bitset 间的交、并、差还没有实现。有兴趣的朋友可以继续尝试。

其实,bitset 包也有人实现了,github地址 bit。可以读读它的源码,实现思路和上面介绍差不多。

下面是一个使用案例。

package mainimport ("fmt""github.com/yourbasic/bit"
)func main() {s := bit.New(2, 3, 4, 65, 128)fmt.Println("s contains 65", s.Contains(65))fmt.Println("s contains 15", s.Contains(15))s.Add(15)fmt.Println("s contains 15", s.Contains(15))fmt.Println("next 20 is ", s.Next(20))fmt.Println("prev 20 is ", s.Prev(20))s2 := bit.New(10, 22, 30)s3 := s.Or(s2)fmt.Println("next 20 is ", s3.Next(20))s3.Visit(func(n int) bool {fmt.Println(n)return false  // 返回 true 表示终止遍历})
}

执行结果:

s contains 65 true
s contains 15 false
s contains 15 true
next 20 is 65
prev 20 is 15
next 20 is 22
2
3
4
10
15
22
30
65
128

代码的意思很好理解,就是一些增删改查和集合的操作。要注意的是,bitset 和前面的 set 的区别,bitset 的成员只能是 int 整型,没有 set 灵活。平时的使用场景也比较少,主要用在对效率和存储空间要求较高的场景。

总结

本文介绍了Go 中两种 set 的实现原理,并在此基础介绍了对应于它们的两个包简单使用。我觉得,通过这篇文章,Go 中 set 的使用,基本都可以搞定了。

除这两个包,再补充两个,zoumo/goset 和 github.com/willf/bitset。

博文地址:Golang 中如何实现 Set

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/243844.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

K8S--安装Nginx

原文网址&#xff1a;K8S--安装Nginx-CSDN博客 简介 本文介绍K8S安装Nginx的方法。 1.创建Nginx目录及配置文件 mkdir -p /work/devops/k8s/app/nginx/{config,html} 在config目录下创建nginx.conf配置文件&#xff0c;内容如下&#xff1a; # events必须要有 events {wo…

jdk的安装和Tomcat的安装

jdk的安装 双击jdk&#xff0c;然后一路下一步 公共JRE可以关闭&#xff0c;没多大用&#xff0c;反而会占用内存 计算机–>属性–>高级系统设置–>环境变量 系统变量–新建 JAVA_HOMEjdk的存放路径 修改path 在path的最后面添加&#xff08;&#xff1b;%JAVA_H…

即插即用篇 | UniRepLKNet:用于音频、视频、点云、时间序列和图像识别的通用感知大卷积神经网络 | DRepConv

大卷积神经网络(ConvNets)近来受到了广泛研究关注,但存在两个未解决且需要进一步研究的关键问题。1)现有大卷积神经网络的架构主要遵循传统ConvNets或变压器的设计原则,而针对大卷积神经网络的架构设计仍未得到解决。2)随着变压器在多个领域的主导地位,有待研究ConvNets…

【漏洞复现】SpringBlade export-user接口SQL注入漏洞

文章目录 前言声明一、SpringBlade系统简介二、漏洞描述三、影响版本四、漏洞复现五、修复建议 前言 SpringBlade 是一个由商业级项目升级优化而来的微服务架构 采用Spring Boot 2.7 、Spring Cloud 2021 等核心技术构建&#xff0c;完全遵循阿里巴巴编码规范。提供基于React和…

PowerShell install 一键部署grafana

grafana 前言 Grafana 是一款开源的数据可视化和监控仪表盘工具。它提供了丰富的数据查询、可视化和报警功能,可用于实时监控、数据分析和故障排除等领域。 通过 Grafana,您可以连接到各种不同的数据源,包括时序数据库(如 Prometheus、InfluxDB)和关系型数据库(如 MySQ…

Halcon基于形状的模板匹配inspect_shape_model

Halcon基于形状的模板匹配 基于形状的匹配&#xff0c;就是使用目标对象的轮廓形状来描述模板。Halcon中有操作助手&#xff0c;可以直观 地进行形状模板匹配的参数选择以及效果测试。如果使用算子编写&#xff0c;步骤如下。 &#xff08;1&#xff09;从参考图像上选择检测的…

c++:string相关的oj题(415. 字符串相加、125. 验证回文串、541. 反转字符串 II、557. 反转字符串中的单词 III)

文章目录 1. 415. 字符串相加题目详情代码1思路1代码2思路2 2. 125. 验证回文串题目详情代码1&#xff08;按照要求修改后放到新string里&#xff09;思路1代码2(利用双指针/索引)思路2 3. 541. 反转字符串 II题目详情代码1思路1 4. 557. 反转字符串中的单词 III题目详情代码1&…

CocoaPods的安装和使用

前言 本篇文章讲述CocoaPods的安装和使用 安装cocoaPods 如果电脑没有安装过cocoaPods&#xff0c;需要先安装&#xff0c;使用下面的命令&#xff1a; sudo gem install cocoapods输入密码后开始安装&#xff0c;需要等待。。。但是我这里报错了。 The last version of d…

nexus清理docker私库

下载nexus-cli客户端&#xff0c;并非必须下载到服务器&#xff0c;理论上只要能访问到nexus就行 wget https://s3.eu-west-2.amazonaws.com/nexus-cli/1.0.0-beta/linux/nexus-cli这个链接下载不了了&#xff0c;末尾有资源下载&#xff0c;里面包含了完整包和脚本&#xff0…

即插即用篇 | YOLOv8 引入 SENetv2 | 多套版本配合使用

卷积神经网络(CNNs)通过提取空间特征并在基于视觉的任务中实现了最先进的准确性,彻底改变了图像分类。所提出的压缩激励网络模块收集输入的通道表示。多层感知机(MLP)从数据中学习全局表示,在大多数用于学习图像提取特征的图像分类模型中起到关键作用。在本文中,我们引入…

npm ,yarn 更换使用国内镜像源,阿里源,清华大学源

在平时开发当中&#xff0c;我们经常会使用 Npm&#xff0c;yarn 来构建 web 项目。但是npm默认的源的服务器是在国外的&#xff0c;如果没有梯子的话。会感觉特别特别慢&#xff0c;所以&#xff0c;使用国内的源是非常有必要的。 Nnpm&#xff0c; yarn 常用命令 常用命令&am…

Appium 环境配置

Appium 是一个开源的、跨平台的测试框架&#xff0c;可以用来测试 Native App、混合应用、移动 Web 应用&#xff08;H5 应用&#xff09;等&#xff0c;也是当下互联网企业实现移动自动化测试的重要工具。Appium 坚持的测试理念&#xff1a; •无需用户对 App 进行任何修改或…

opencv#27模板匹配

图像模板匹配原理 例如给定一张图片&#xff0c;如上图大矩阵所示&#xff0c;然后给定一张模板图像&#xff0c;如上图小矩阵。 我们在大图像中去搜索与小图像中相同的部分或者是最为相似的内容。比如我们在图像中以灰色区域给出一个与模板图像尺寸大小一致的区域&#xff0c;…

软考系分之计算机网络规划设计、综合布线、RAID和网络存储等

文章目录 1、概要2、网络的三层模型3、综合布线系统4、廉价磁盘冗余阵列&#xff08;RAID&#xff09;5、网络存储6、总结 1、概要 本篇重点介绍计算机网络中的网络规划设计、综合布线、RAID和网络存储。 2、网络的三层模型 三层模型分为核心层、汇聚层和接入层&#xff0c;接…

数组A[m+n]中存放了两个线性表(a1,a2,.....am)和(b1,b2.....bn),将数组中的两个线性表的位置互换,要求空间复杂度为1

要求空间复杂度为O(1)&#xff0c;那么不可以借助辅助数组来完成此操作 算法思路&#xff1a;可先将此数组逆置变成bn,......b1,am,....,a1&#xff0c;然后分别逆转两个线性表的数据元素 算法实现 1、定义一个函数&#xff0c;该函数的功能是可以对一个数组的任意连续的部分进…

UDP和TCP代理协议有什么区别?哪个更好

在互联网的世界里&#xff0c;数据传输的方式有很多种&#xff0c;其中 UDP 和 TCP 是两种常见的传输协议。而代理协议则是为了在网络中传输数据时提供安全、稳定和高效的传输环境。那么&#xff0c;UDP 和 TCP 代理协议有什么区别呢&#xff1f;哪个更好呢&#xff1f;接下来&…

内网穿透的应用-使用Docker搭建一个Wiki.Js知识库系统并实现分享他人远程创作

文章目录 1. 安装Docker2. 获取Wiki.js镜像3. 本地服务器打开Wiki.js并添加知识库内容4. 实现公网访问Wiki.js5. 固定Wiki.js公网地址 不管是在企业中还是在自己的个人知识整理上&#xff0c;我们都需要通过某种方式来有条理的组织相应的知识架构&#xff0c;那么一个好的知识整…

力扣移掉k位数字402

Problem: 402. 移掉 K 位数字 给你一个以字符串表示的非负整数 num 和一个整数 k &#xff0c;移除这个数中的 k 位数字&#xff0c;使得剩下的数字最小。请你以字符串形式返回这个最小的数字。 示例 1 &#xff1a; 给你一个以字符串表示的非负整数 num 和一个整数 k &…

阿里云 SAE 2.0 正式商用:极简易用、百毫秒弹性效率,降本 40%

作者&#xff1a;黛忻 本文主要介绍阿里云 Serverless 应用引擎&#xff08;以下简称 SAE &#xff09;如何帮助企业跨越技术鸿沟&#xff0c;从传统应用架构无感升级到 Serverless 架构&#xff0c;以更高效、更经济的方式进行转型&#xff0c;快速进入云原生快车道&#xff0…

ATA-3090B功率放大器在医疗行业器官芯片中的应用

科学技术的发展&#xff0c;不断改变着我们的世界&#xff0c;也造福着我们的生活&#xff0c;在未来我们会拥有更健康的体魄&#xff0c;更长久的器官芯片技术在医疗行业的应用越来越广泛。该技术基于生物工程和微电子领域的交叉学科&#xff0c;在实现人工器官和组织复杂功能…