Linux-共享内存

文章目录

  • 前言
  • 一、system V共享内存
      • 申请共享内存
      • 挂载共享内存
      • 删除共享内存挂载
      • 删除共享内存
  • 二、示例代码
  • 三.运行效果


前言


在这之前我们已经学习了两种进程间通信方式:匿名管道和命名管道。
从我们之前的学习已经知道,想让多个进程间进行通信就需要让他们一起看到同一份资源。
匿名管道是通过fork子进程来让子进程继承父进程的fd。
命名管道是通过生成命名管道文件,并一起打开管道文件。

一、system V共享内存

共享内存相对于我们之前的管道通信有一定区别:

1.共享内存是要让多个进程看到同一份内存.

根据之前我们介绍过的冯洛伊曼体系,对于内存级别的通信特性就代表了共享内存其通信效率要高于管道通信!

2.进程想要看到同一份共享内存,需要key

在这里插入图片描述
这里生成的key方式与哈希字符串类似,通过算法来形成key。所以要想要形成同样的key,就必须确保pathname和porj_id相同,不同进程凭借同样的key来访问同一份共享内存!

申请共享内存

在这里插入图片描述
参数key 代表如果要访问该共享内存需要的key。
参数size代表申请的共享内存大小,这里需要注意的是,共享内存的大小是以4096个字节为单位,所以size最好是4096的倍数。
参数shmflg是模式选项,有 IPC_CREAT 和 IPC_EXCL , IPC_CREAT单独使用代表 如果没有该共享内存则创建,有则使用已经存在的。 IPC_EXCL单独使用没有意义,如果和IPC_CREAT一起使用代表如果没有该共享内存则创建,如果已经存在则报错。
返回值是共享内存的id,就跟文件一样,我们的共享内存也需要进行管理,所以就也有id。

挂载共享内存

由于我们的共享内存的通信方式是让多个进程看到同一份内存,从我们之前学习地址空间的知识,进程需要通过虚拟地址空间->页表->物理内存,所以,要想看到看到位于物理内存的共享内存,就需要修改页表来做到,所以提供了挂载共享内存的接口函数
在这里插入图片描述
参数shmid是我们刚刚讲的共享内存id。
参数shmaddr 可以指定shmaddr的地址为挂载的共享内存地址,一般设置为nullptr。
参数shmflg是模式选项,SHM_RND和SHM_RDONLY,SHM_RND与shmaddr相关,SHM_RDONLY指定该进程只允许对共享内存进行读操作。
返回值为挂载的共享内存地址。

删除共享内存挂载

注意:这里是删除挂载,不是删除共享内存!!!

在这里插入图片描述
参数shmaddr为共享内存在该进程的地址。
返回值若为1则删除成功,-1则发生错误。

删除共享内存

在这里插入图片描述
参数shmid为共享内存id。
参数cmd为模式选项,其中IPC_RMID为删除选项
参数buf这里暂时不讨论。
返回值若为1则删除成功,-1则发生错误

我们要想删除共享内存也不止这一种方式

通过输入ipcs -m 查看存在的共享内存属性
在这里插入图片描述

通过输入ipcrm -m shmid 来删除共享内存

二、示例代码

#Server端
#include "comm.hpp"
#include "Log.hpp"int main()
{// 1.创建创建tokenkey_t key = ftok(PATH_NAME, PROJ_ID);Log(Debug) << "共享秘钥创建成功! step 1"<< " [key:" << getKey(key) << "]" << std::endl;// 2.申请共享内存int shmid = shmget(key, SHM_SIZE, IPC_CREAT | 0666);if (shmid == -1){Log(Error) << "共享内存创建失败!!!!! step 2" << std::endl;perror("shmget");exit(1);}Log(Debug) << "共享内存创建成功! step 2" << std::endl;//sleep(10);char *shmaddr = (char *)shmat(shmid, nullptr, SHM_RDONLY);if ((void *)shmaddr == (void *)-1){Log(Error) << "共享内存挂载失败!!!!!! step 3" << std::endl;perror("shmat");exit(2);}Log(Debug) << "共享内存挂载成功! step 3" << std::endl;// sleep(5);//开始访问共享内存while(1){printf("%s\n",shmaddr);sleep(1);if(strcmp(shmaddr,"quit") == 0) break;}int n = shmdt(shmaddr);if (n == -1){Log(Error) << "共享内存挂载删除失败! step 4" << std::endl;perror("shmdt");exit(3);}Log(Debug) << "共享内存挂载删除! step 4" << std::endl;//sleep(5);n = shmctl(shmid, IPC_RMID, nullptr);if (n == -1){Log(Error) << "共享内存删除失败! step 5" << std::endl;perror("shmctl");exit(4);}Log(Debug) << "共享内存删除成功! step 5" << std::endl;return 0;
}
#Client端
#include "Log.hpp"
#include "comm.hpp"int main()
{key_t key = ftok(PATH_NAME, PROJ_ID);Log(Debug) << "共享秘钥创建成功!step 1"<< " [key:" << getKey(key) << "]" << std::endl;int shmid = shmget(key, SHM_SIZE, 0);if (shmid == -1){Log(Error) << "共享内存获取失败!!!!! step 2" << std::endl;perror("shmget");exit(1);}Log(Debug) << "共享内存获取成功!step 2" << std::endl;//sleep(10);char *shmaddr = (char *)shmat(shmid, nullptr, 0);if ((void *)shmaddr == (void *)-1){Log(Error) << "共享内存挂载失败!!!!!! step 3" << std::endl;   perror("shmat");exit(2);}Log(Debug) << "共享内存挂载成功!step 3" << std::endl;//sleep(5);while(1){//std::cout << "请输入:->" ;ssize_t n = read(0, shmaddr, SHM_SIZE - 1);if(n > 0){shmaddr[n - 1] = 0;if(strcmp(shmaddr,"quit") == 0) break;}}int n = shmdt(shmaddr);if (n == -1){Log(Error) << "共享内存挂载删除失败! step 4" << std::endl;perror("shmdt");exit(3);}Log(Debug) << "共享内存挂载删除!step 4" << std::endl;//sleep(5);return 0;
}
comm.hpp
#include <iostream>
#include <cstdio>
#include <sys/types.h>
#include <sys/ipc.h>
#include <assert.h>
#include <sys/shm.h>
#include <unistd.h>
#include <cstring>
#define PROJ_ID 10086
#define SHM_SIZE 4096char buffer[514] = {0};const char *getKey(key_t key)
{sprintf(buffer, "0x%x", key);return buffer;
}#define PATH_NAME "/home/fengjunzi/test"
Log.hpp
#include <iostream>
#include <time.h>
#include <string>#define Debug 0
#define Error 1const std::string com[] = {"Debug","Error"};std::ostream &Log(int command)
{std::cout << "[" << (unsigned)time(nullptr) << "]:"<< "[" << com[command] << "]" <" ";return std::cout;
}

三.运行效果

在这里插入图片描述
它的缺陷从运行就可以看出来,共享内存没有进行同步与互斥。
不能像管道一样具有访问控制,就会出现写端只写了一半,但是读端已经开始读了的情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/245159.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

sql管理工具archery简介

在平时的工作过程中&#xff0c;我们肯定会遇到使用sql平台的场景&#xff0c;业内也有很多工具&#xff0c;类似阿里云的dms&#xff0c;但是这个是和云厂商绑定的&#xff0c;我们可能一般没有用到阿里云组件就比较困难了&#xff0c;那还有什么选项了&#xff0c;经过调研&a…

创建第一个 Spring 项目(IDEA社区版)

文章目录 创建 Spring 项目创建一个普通的 Maven 项目添加 Spring 依赖IDEA更换国内源 运行第一个 Spring 项目新建启动类存储 Bean 对象将Bean注册到Spring 获取并使用 Bean 对象 创建 Spring 项目 创建一个普通的 Maven 项目 首先创建一个普通的 Maven 项目 添加 Spring 依…

Windows11 Copilot助手开启教程(免费GPT-4)

Windows11上开启Copilot助手教程踩坑指南 Copilot介绍Copilot开启步骤1、更新系统2、更改语言和区域3、下载 ViVeTool 工具4、开启Copilot 使用 Copilot介绍 Windows Copilot 是 Windows 11 中的一个新功能&#xff0c;它可以让你与一个智能助理进行对话&#xff0c;获取信息&…

05-Seata下SQL使用限制

不支持 SQL 嵌套不支持多表复杂 SQL(自1.6.0版本&#xff0c;MySQL支持UPDATE JOIN语句&#xff0c;详情请看不支持存储过程、触发器部分数据库不支持批量更新&#xff0c;在使用 MySQL、Mariadb、PostgreSQL9.6作为数据库时支持批量&#xff0c;批量更新方式如下以 Java 为例 …

k8s架构、工作流程、集群组件详解

目录 k8s概述 特性 作用&#xff08;为什么使用&#xff09; k8s架构 k8s工作流程 k8s集群架构与组件 核心组件详解 Master节点 Kube-apiserver Kube-controller-manager Kube-scheduler 存储中心 etcd Node Kubelet Kube-Proxy 网络通信模型 容器引擎 k8s核…

Java-NIO篇章(5)——Reactor反应器模式

前面已经讲过了Java-NIO中的三大核心组件Selector、Channel、Buffer&#xff0c;现在组件我们回了&#xff0c;但是如何实现一个超级高并发的socket网络通信程序呢&#xff1f;假设&#xff0c;我们只有一台内存为32G的Intel-i710八核的机器&#xff0c;如何实现同时2万个客户端…

http接口测试—自动化测试框架设计

一、测试需求描述 对服务后台一系列的http接口功能测试。 输入&#xff1a;根据接口描述构造不同的参数输入值&#xff08;Json格式&#xff09; 输出&#xff1a;字符串&#xff08;传入的方式传入的字符串&#xff09; http://localhost:8090/lctest/TestServer 二、程序设计…

C4.5决策树的基本建模流程

C4.5决策树的基本建模流程 作为ID3算法的升级版&#xff0c;C4.5在三个方面对ID3进行了优化&#xff1a; &#xff08;1&#xff09;它引入了信息值&#xff08;information value&#xff09;的概念来修正信息熵的计算结果&#xff0c;以抑制ID3更偏向于选择具有更多分类水平…

SpringCloud Aliba-Seata【下】-从入门到学废【8】

目录 1.数据库创建 1.seata_account库下建表 2.seata_order库下建表 3.seata_storage库下建表 4.在每个库下创建回滚日志 2.创建订单模块 2.1建工程 2.2加pom 2.3改yml 2.4file.conf 2.5registry.conf 2.6domain 2.7Dao 2.8Service 2.9controller 2.10confi…

BGP路由反射-数据中心IDC项目经验

一、背景描述 R1,R2,R3在AS200区域内&#xff0c;R1和R2,R1和R3建立OSPF&#xff0c;宣告接口互联. AS200区域内&#xff0c;R1和R2建立IBGP, R1和R3建立IBGP R2和R4建立EBGP, R3和R5建立EBGP。 网络拓扑&#xff1a; 二、故障现象 R1和R2可以收到来自AS100区域R4的E…

pytorch实战-6手写数字加法机-迁移学习

1 概述 迁移学习概念&#xff1a;将已经训练好的识别某些信息的网络拿去经过训练识别另外不同类别的信息 优越性&#xff1a;提高了训练模型利用率&#xff0c;解决了数据缺失的问题&#xff08;对于新的预测场景&#xff0c;不需要大量的数据&#xff0c;只需要少量数据即可…

Unity通用渲染管线升级URP、HDRP

Unity通用渲染管线升级URP、HDRP 一、Build-in Pipline升级到 URP 一、Build-in Pipline升级到 URP 安装URP包 升级所有材质&#xff08;升级完成后材质会变成紫红色&#xff0c;Shader丢失&#xff0c;此为正常现象&#xff09; 创建 UniversalRenderPipelineAsset 配置文…

Nacos 在云原生架构下的演进

作者&#xff1a;之卫 背景 Nacos 提供的最核心能力是动态服务发现与动态配置管理能力&#xff0c;在云原生环境下&#xff0c;借助云产品&#xff0c;如 EDAS&#xff08;企业级分布式应用服务&#xff09;平台中&#xff0c;我们可以很轻松地使用 K8s 来托管 Nacos 体系的微…

蓝桥杯(Python)每日练Day5

题目 OJ1229 题目分析 题目完全符合栈的特征&#xff0c;后进先出。如果能够熟练使用列表的9种方法那么这道题很容易解出。 题解 a[]#存衣服 nint(input()) for i in range(n):llist(input().split())#判断每一步的操作if len(l[0])2:a.append(l[1])else:while a.pop()!l…

大数据平台红蓝对抗 - 磨利刃,淬精兵!

背景 目前大促备战常见备战工作&#xff1a;专项压测&#xff08;全链路压测、内部压测&#xff09;、灾备演练、降级演练、限流、巡检&#xff08;监控、应用健康度&#xff09;、混沌演练&#xff08;红蓝对抗&#xff09;&#xff0c;如下图所示。随着平台业务越来越复杂&a…

LabVIEW探测器CAN总线系统

介绍了一个基于FPGA和LabVIEW的CAN总线通信系统&#xff0c;该系统专为与各单机进行系统联调测试而设计。通过设计FPGA的CAN总线功能模块和USB功能模块&#xff0c;以及利用LabVIEW开发的上位机程序&#xff0c;系统成功实现了CAN总线信息的收发、存储、解析及显示功能。测试结…

Obsidian笔记软件结合cpolar实现安卓移动端远程本地群晖WebDAV数据同步

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

使用Robot Framework实现多平台自动化测试

基于Robot Framework、Jenkins、Appium、Selenium、Requests、AutoIt等开源框架和技术&#xff0c;成功打造了通用自动化测试持续集成管理平台&#xff08;以下简称“平台”&#xff09;&#xff0c;显著提高了测试质量和测试用例的执行效率。 01、设计目标 平台通用且支持不…

Hadoop基本概论

目录 一、大数据概论 1.大数据的概念 2.大数据的特点 3.大数据应用场景 二、Hadoop概述 1.Hadoop定义 2.Hadoop发展历史 3.Hadoop发行版本 4.Hadoop优势 5.Hadoop1.x/2.x/3.x 6.HDFS架构 7.Yarn架构 8.MapReduce架构 9.大数据技术生态体系 一、大数据概论 1.大数…

docker 基础手册

文章目录 docker 基础手册docker 容器技术镜像与容器容器与虚拟机docker 引擎docker 架构docker 底层技术docker 二进制安装docker 镜像加速docker 相关链接docker 生态 docker 基础手册 docker 容器技术 开源的容器项目&#xff0c;使用 Go 语言开发原意“码头工人”&#x…