选择排序(堆排序和topK问题)

选择排序

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。

如果我们用扑克牌来举例,那么选择排序就像是提前已经把所有牌都摸完了,而再进行牌之间的排序;而插入排序则是边摸边排。

直接选择排序

  • 在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素
  • 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
  • 在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素

直接选择排序的特性总结:

  1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

那么下面我先将代码展示给大家,然后再为大家讲解其中奥妙

void SelectSort(int* a, int n) {int begin = 0;int end = n - 1;while (begin < end) {int min = begin;int max = begin;for (int i = begin + 1; i <= end; i++) {if (a[i] < min) {min = i;}if (a[i] > max) {max = i;}}Swap(&a[begin], &a[min]);if (max == begin){max = min;}Swap(&a[end], &a[max]);begin++;end--;}
}

首先呢,我们先把起始位置的下标和最后位置的下标给记录下来,并将最小值和最大值的下标都初始化为begin,外面再套上一层循环,限制条件为begin<end,当两个下标走到一起或者错开时,就会结束循环,也就排好了。

而while循环里面的才是排序的逻辑部分,for循环从begin的下一个位置开始,到end的位置结束,并在其中进行比较,改变每一次循环中最大值和最小值的下标,并在循环结束后交换最小值和begin下标值的位置,最大值与end下标值的位置,最后begin和end都往中间走,开始下一轮循环

不过需要注意的是,我们加入了一个if判断语句:其实这是为了防止最大值就在begin下标时,原来的最大值会和最小值交换位置,然后最小值会被换到end的位置上成为最大值,那样子的话就会出现错误,排序便失败了;但加上这个之后,在第一次交换过后,max的值到了min的下标,这个时候只需要把max下标也改为min,这个时候替换就不会再把最小值给替换到最后,而是最大值了。这样讲可能也有点绕,给大家画个图便于理解。
在这里插入图片描述
相信大家根据函数看就可以看懂啦!还是很好理解的!

堆排序

相比于刚才的直接选择排序,想必当然还是堆排序更加吸引大家的注意,那就让我们开始学习吧!

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。

堆排序的特性总结:

  1. 堆排序使用堆来选数,效率就高了很多。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

代码如下~

void HeapSort(int* a, int n) {for (int i = 0; i < n; i++) {AdjustUp(a, i);//建大堆}int end = n - 1;while (end > 0) {Swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

虽然堆排序的本体很小,但是千万不能忽视了向上调整算法和向下调整算法,所以还是把这一串代码附在下面

void AdjustUp(int* a, int child) {int parent = (child - 1) / 2;while (child > 0) {if (a[child] > a[parent]) {Swap(&a[child], &a[parent]);}else {break;//这里没必要return}child = parent;parent = (parent - 1) / 2;}
}void AdjustDown(int* a, int size, int parent) {int child = parent * 2 + 1;//假设左子节点小于右子节点//右子节点不一定有,可能会越界while (child < size) {if (child + 1 < size && a[child + 1] > a[child]) {child++;//其实就是左子节点转换到右子节点上}if (a[child] > a[parent]) {Swap(&a[child], &a[parent]);parent = child;//parent移动到原来child的位置上child = child * 2 + 1;//child来寻找自己的下一个左子节点}else {break;}}
}

虽然堆排序中有堆,但是我们不可能真的建一个堆然后再进行排序,毕竟手搓一个堆的函数还是挺麻烦的,所以我们本质上是模拟堆插入的过程建堆,并利用其逻辑对数组中的元素进行排序,我们还是用例子说话。并且在建堆之前还有一个需要注意的,因为现在给的例子是以升序排列,所以我们现在建立的是大堆(需要在向上调整算法和向下调整算法中改变大于小于符号)

建立大堆的原因还有一个,那就是如果建立小堆的话,当删除堆顶元素(最小值)时,剩下的数还看作堆的话,关系就全乱了,需要重新建堆,浪费时间。

第一步:建堆
在这里插入图片描述
第二步:排序
其实就是将end定为数组的最后一个下标n-1,然后堆顶元素和最后一个元素交换,向下调整之后,删除最后一个元素,最后end走到0下标的时候就结束,写一两步大家看看
在这里插入图片描述
实际上,虽然在堆中删除了,但我们直到此时9已经到了n-1下标的位置,也就是排在了最大值的位置上。而向下调整之后,我们会发现,8又到了最上方,并且也是目前的最大值,也就是下一次,8会与2交换,成为次大的值;2又与7交换,2又与6交换,那么很明显,下一次循环交换的数就是7了,之后就是6,这样,最大值就慢慢的被调节到了end的位置,最后数组中的元素都正序排列。

优化

除了使用向上调整建堆,其实我们还可以使用向下调整建堆,进行讲解后,大家甚至还会发现向下调整更加简洁方便

for (int i = (n-1-1)/2; i >= 0; --i){AdjustDown(a, n, i);}

以上便是将向上调整改为向下调整算法后的函数,为什么从(n-1-1)/2开始呢,是因为n-1是最后一个元素的下标,而(n-1-1)/2则是找到其父节点,然后从底端进行调整。

而至于为什么向下建堆更简洁呢?给大家用数学写写,大家就懂啦!

在这里插入图片描述
在这里插入图片描述
eg.n=2^h-1上面的T(n)都是T(h),到下面才是T(n),写错了QAQ
由此可以看出,向下调整建堆的时间复杂度为O(n),下面我们计算向上调整建堆的时间复杂度

在这里插入图片描述
由此可知:向上调整建堆的时间复杂度为O(nlogn),是大于向下调整建堆的,这样子的话,我们以后如果使用堆排序,我们就可以直接忽略向上调整算法,只写向下调整算法,代码量可以更少,时间复杂度也更精简

topK问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆
    前k个最大的元素,则建小堆
    前k个最小的元素,则建大堆
  2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
    将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
void PrintTopK(int* a, int n, int k) {int* heap = (int*)malloc(sizeof(int) * k);if (heap == NULL) {perror("malloc fail");return;}for (int i = 0; i < k; ++i) {heap[i] = a[i];AdjustUp(heap, i);//先用前k个数创建一个小堆}for (int i = k; i < n; ++i) {if (a[i] > heap[0]) {heap[0] = a[i];//从k下标开始遍历数据,如果大于heap[0],就让其成为heap[0]AdjustDown(heap, k, 0);//然后向下调整}}for (int i = 0; i < k; ++i) {printf("%d ", heap[i]);//打印最大的k个数}printf("\n");free(heap);//记住释放heap开辟的内存
}

我们还是照样举一个例子,虽然topK是在n大于k很多的情况下才使用的,但为了看上去简单,我们选择两个相近的n与k
在这里插入图片描述
我们在插入后进行了两次向下调整,由此可知,当我们进行完所有的向下调整之后,留在k个元素小堆中的元素一定是最大的几个

当然,除了从数组中取出的方法,我们还可以写出一种从文件中拿出数据并排序的topK函数,大家请看!

void CreateNDate()
{// 造数据int n = 10000000;  // 设置要生成的数据数量srand(time(0));  // 使用当前时间作为随机数种子,确保每次运行生成的随机数不同const char* file = "data.txt";  // 指定数据文件的名称FILE* fin = fopen(file, "w");  // 以写模式打开文件if (fin == NULL){perror("fopen error");  // 输出文件打开错误信息return;}// 随机生成n个整数,并将其写入文件for (int i = 0; i < n; ++i){int x = (rand() + i) % 10000000;  // 生成0到9999999之间的随机整数,加i是因为随机数最多只可以生成3万多个,会有重复的,这样能保证重复率大大降低fprintf(fin, "%d\n", x);  // 将随机数写入文件}fclose(fin);  // 关闭文件
}
void PrintTopK(const char* file, int k)
{FILE* fout = fopen(file, "r");  // 以只读模式打开文件if (fout == NULL){perror("fopen error");  // 输出文件打开错误信息return;}// 建一个k个数小堆int* minheap = (int*)malloc(sizeof(int) * k);  // 分配大小为k的整型数组内存if (minheap == NULL){perror("malloc error");  // 输出内存分配错误信息return;}// 读取前k个数,构建最小堆for (int i = 0; i < k; i++){fscanf(fout, "%d", &minheap[i]);  // 从文件中读取整数,构建最小堆AdjustUp(minheap, i);  // 执行向上调整,维护最小堆性质}int x = 0;while (fscanf(fout, "%d", &x) != EOF)  // 从文件中读取整数,直到文件结束{if (x > minheap[0])  // 如果当前数字大于堆顶元素{minheap[0] = x;  // 将堆顶元素替换为当前数AdjustDown(minheap, k, 0);  // 执行向下调整,维护最小堆性质}}for (int i = 0; i < k; i++){printf("%d ", minheap[i]);  // 输出最小堆中的前k个元素}printf("\n");free(minheap);  // 释放动态分配的堆内存fclose(fout);  // 关闭文件
}

以上就是选择排序中的几个问题,下一节排序,我们讲解的是交换排序,欢迎大家持续收看!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/245905.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Google Chrome RCE漏洞 CVE-2020-6507 和 CVE-2024-0517 流程分析

本文深入研究了两个在 Google Chrome 的 V8 JavaScript 引擎中发现的漏洞&#xff0c;分别是 CVE-2020-6507 和 CVE-2024-0517。这两个漏洞都涉及 V8 引擎的堆损坏问题&#xff0c;允许远程代码执行。通过EXP HTML部分的内存操作、垃圾回收等流程方式实施利用攻击。 CVE-2020-…

网络编程套接字(1)

网络编程基础 为什么需要网络编程? --丰富的网络资源 用户在浏览器中,打开在线视频网站,如优酷看视频,实质通过网络,获取到网络上的一个视频资源 与本地打开视频文件类似,只是视频文件这个资源的来源是网络. 相比于本地资源来说,网络提供了更为丰富的网络资源: 所谓的网络…

uniapp状态管理Vuex介绍及vuex核心概念

状态管理Vuex Vuex 是什么&#xff1f; Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用集中式存储管理应用的所有组件的状态&#xff0c;并以相应的规则保证状态以一种可预测的方式发生变化。 uni-app 内置了 Vuex 什么是“状态管理模式”&#xff1f; <!…

要做接口并发性能测试,总得先学会分析吧!

&#x1f525; 交流讨论&#xff1a;欢迎加入我们一起学习&#xff01; &#x1f525; 资源分享&#xff1a;耗时200小时精选的「软件测试」资料包 &#x1f525; 教程推荐&#xff1a;火遍全网的《软件测试》教程 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1…

电脑自动开机播放PPT的解决方案

客户有个需求&#xff0c;要求与LED大屏幕连接的电脑定时自动播放PPT。为了安全电脑在不播放的时段&#xff0c;必须关机。 目录 1、使用“时控插座”并进行设置 2、戴尔电脑BIOS设置&#xff08;上电开机&#xff09; 3、设置Windows自动登录 4、任务计划设置 5、启动Au…

谷粒商城【成神路】-【1】——项目搭建

目录 &#x1f95e;1.整体架构图 &#x1f355;2.微服务划分图 &#x1f354;3.开发环境 &#x1f354;4.搭建git &#x1f32d;5.快速搭建服务 &#x1f37f;6.数据库搭建 &#x1f9c2;7.获取脚手架 &#x1f953;8.代码生成器 &#x1f373;9.创建公共模块 …

springboot优雅停机

import org.springframework.context.annotation.Configuration;import javax.annotation.PreDestroy;Configuration public class DataBackupConfig {PreDestroypublic void backData(){System.out.println("开始备份..."System.currentTimeMillis());System.out.pr…

GPT-5不叫GPT-5?下一代模型会有哪些新功能?

OpenAI首席执行官奥特曼在上周三达沃斯论坛接受媒体采访时表示&#xff0c;他现在的首要任务就是推出下一代大模型&#xff0c;这款模型不一定会命名GPT-5。虽然GPT-5的商标早已经注册。 如果GPT-4目前解决了人类任务的10%&#xff0c;GPT-5应该是15%或者20%。 OpenAI从去年开…

【STM32】STM32学习笔记-硬件SPI读写W25Q64(40)

00. 目录 文章目录 00. 目录01. SPI简介02. W25Q64简介03. SPI相关API3.1 SPI_Init3.2 SPI_Cmd3.3 SPI_I2S_SendData3.4 SPI_I2S_ReceiveData3.5 SPI_I2S_GetFlagStatus3.6 SPI_I2S_ClearFlag3.7 SPI_InitTypeDef 04. 硬件SPI读写W25Q64接线图05. 硬件SPI读写W25Q64示例06. 程序…

gitlab.rb主要配置

根据是否docker安装,进入挂载目录或安装目录 修改此文件,我一般是在可视化窗口中修改,有时候也在命令行手敲 将下面的配置复制到该文件中 external_url http://192.168.100.50 # nginx[listen_port] = 8000 (docker安装的这一行不需要,因为端口映射导致此处修改会导致访问…

RX4901CE (RTC模块)

RX4901CE是一个集成了32.768 kHz数字温度补偿晶体振荡器(DTCXO)的RTC模块。高稳定性&#xff0c;低电流消耗&#xff0c;时间戳功能&#xff0c;当外部或内部事件发生时&#xff0c;可以记录多达32个日期和时间&#xff0c;以及基本的RTC功能&#xff0c;如时间和日历&#xff…

python flask学生管理系统

预览 前端 jquery css html bootstrap: 4.x 后端 python: 3.6.x flask: 2.0.x 数据库 mysql: 5.7 学生管理模块 登录、退出查看个人信息、修改个人信息成绩查询查看已选课程选课、取消选课搜索课程课程列表分页功能 教师模块 登录、退出查看个人信息、修改个人信息录入…

Oracle Linux 9.3 安装图解

风险告知 本人及本篇博文不为任何人及任何行为的任何风险承担责任&#xff0c;图解仅供参考&#xff0c;请悉知&#xff01;本次安装图解是在一个全新的演示环境下进行的&#xff0c;演示环境中没有任何有价值的数据&#xff0c;但这并不代表摆在你面前的环境也是如此。生产环境…

【模拟算法系列】详解5道题

本文讲解模拟算法系列的5道经典题&#xff0c;在讲解题目的同时提供AC代码&#xff0c;点击题目即可打开对应OJ链接 目录 模拟算法的介绍 1、替换所有的问号 2、提莫攻击 3、 Z 字形变换 4、外观数列 5、数青蛙 模拟算法的介绍 题目中明确告诉你要干什么&#xff0c;思路…

软件测试练手项目,可以写进简历里面的项目实战

最近收到许多自学自动化测试的小伙伴私信&#xff0c;学习了理论知识后&#xff0c;却没有合适的练手项目。 测试本身是一个技术岗位&#xff0c;如果只知道理论&#xff0c;没有实战经验&#xff0c;在面试中很难说服面试官&#xff0c;比如什么场景下需要添加显示等待&#x…

苹果Find My市场需求火爆,伦茨科技ST17H6x芯片助力客户量产

苹果发布AirTag发布以来&#xff0c;大家都更加注重物品的防丢&#xff0c;苹果的 Find My 就可以查找 iPhone、Mac、AirPods、Apple Watch&#xff0c;如今的Find My已经不单单可以查找苹果的设备&#xff0c;随着第三方设备的加入&#xff0c;将丰富Find My Network的版图。产…

java SSM自助快递服务平台myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM自助快递服务平台是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代 码和数据库&#xff0c;系统主要采…

《游戏-03_3D-开发》之—新输入系统人物移动攻击连击

本次修改unity的新输入输出系统。本次修改unity需要重启&#xff0c;请先保存项目&#xff0c; 点击加号起名为MyCtrl&#xff0c; 点击加号设置为一轴的&#xff0c; 继续设置W键&#xff0c; 保存 生成自动脚本&#xff0c; 修改MyPlayer代码&#xff1a; using UnityEngine;…

Web04--Flex布局

1、flex布局 1.1 flex认识 1.2 flex组成 1.3 flex布局 1.3.1 主轴对齐方式 <!DOCTYPE html> <html lang"CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.…

基于密码技术的身份认证——基于对称密码体制的身份认证

一、符号说明&#xff1a; A→B&#xff1a;表示通信实体A向通信实体B发送消息&#xff1b; Ek(x)&#xff1a;表示用认证双方共享的密钥K对x进行加密&#xff1b; Text1&#xff0c;Text2&#xff0c;……&#xff0c;Text n属于可选项&#xff1b; ||&#xff1a;表示比特…