【揭秘】ForkJoinTask全面解析

【揭秘】ForkJoinTask全面解析 - 程序员古德

内容摘要

ForkJoinTask的显著优点在于其高效的并行处理能力,它能够将复杂任务拆分成多个子任务,并利用多核处理器同时执行,从而显著提升计算性能,此外,ForkJoinTask还提供了简洁的API和强大的任务管理机制,使得开发者能够更轻松地编写并行化代码,高效地利用系统资源。

核心概念

ForkJoinTask在Java中主要用来解决可以并行处理的任务的分解与合并问题,它是行计算框架ForkJoinFramework的核心组件,提供了一种高效的方式来利用多核处理器,它解决了以下几个方面的问题:

  1. 任务分解:很多计算密集型或数据处理密集型的问题可以分解为更小的子任务,例如,对一个大型数组进行排序或处理大量数据记录时,通常可以将数组或数据记录集分割成多个较小的部分,然后并行处理这些部分,ForkJoinTask提供了将任务递归分解成更小任务的方式,直到任务足够小以至于顺序执行比并行执行更高效。
  2. 任务并行化:通过ForkJoinPoolForkJoinTask能够将分解后的子任务分配给不同的线程执行,从而实现并行处理,这充分利用了多核处理器的计算能力,提高了程序的执行效率。
  3. 任务结果合并:在子任务并行执行完成后,需要将它们的结果合并以得到最终的结果,ForkJoinTask提供了合并子任务结果的机制,确保所有子任务的结果都能正确地组合在一起。
  4. 工作窃取ForkJoinPool还实现了工作窃取算法,这意味着当一个线程完成了它自己的任务后,它可以从其他线程的任务队列中“窃取”任务来执行,从而减少了线程的空闲时间,提高了资源利用率。

因此,ForkJoinTask是用来处理可并行化任务的强大工具,它通过任务分解、并行化、结果合并和工作窃取等机制,有效地提高了程序的执行效率和资源利用率。

#代码案例

下面是一个使用了ForkJoinTask的简单示例,演示了如何分解一个任务,使其并行处理一个整数数组,并计算数组中所有元素的和。

先创建一个SumTask类,它继承自RecursiveTask<Integer>,用于计算数组元素的和,如果数组的大小超过一个阈值(例如10),则任务将递归地分解为两个子任务,分别处理数组的前半部分和后半部分,否则,任务将顺序计算数组的和,如下代码:

import java.util.concurrent.RecursiveTask;  public class SumTask extends RecursiveTask<Integer> {  private static final int THRESHOLD = 10; // 阈值,当数组大小小于这个值时,不再进行任务分解  private final int[] array;  private final int start;  private final int end;  public SumTask(int[] array) {  this(array, 0, array.length);  }  private SumTask(int[] array, int start, int end) {  this.array = array;  this.start = start;  this.end = end;  }  @Override  protected Integer compute() {  // 如果任务足够小,直接计算结果  if (end - start <= THRESHOLD) {  int sum = 0;  for (int i = start; i < end; i++) {  sum += array[i];  }  return sum;  } else {  // 否则,将任务分解为两个子任务  int middle = (start + end) / 2;  SumTask leftTask = new SumTask(array, start, middle);  SumTask rightTask = new SumTask(array, middle, end);  // 异步执行子任务并等待结果  return leftTask.fork().join() + rightTask.fork().join();  }  }  
}

如下client代码(main函数),如下:

import java.util.concurrent.ForkJoinPool;  
import java.util.concurrent.ForkJoinTask;  public class ForkJoinTaskExample {  public static void main(String[] args) {  int[] array = new int[100];  // 初始化数组  for (int i = 0; i < array.length; i++) {  array[i] = i;  }  // 创建一个ForkJoinPool  ForkJoinPool pool = new ForkJoinPool();  // 提交任务并获取结果  ForkJoinTask<Integer> task = new SumTask(array);  Integer sum = pool.invoke(task);  // 输出结果  System.out.println("Sum of array elements: " + sum);  // 关闭ForkJoinPool(虽然不是严格必需的,因为在这个简单例子中程序即将结束,但在生产代码中是个好习惯)  pool.shutdown();  }  
}

运行代码将输出,如下:

Sum of array elements: 4950

数组包含了0到99的整数,它们的和是4950,通过使用ForkJoinTask,能够并行地计算这个和。

核心API

ForkJoinTask 是 Java 并发包 java.util.concurrent 中的一个抽象类,它表示可以被 ForkJoinPool 执行的任务,ForkJoinTask 有两个直接子类:RecursiveActionRecursiveTask,分别表示不返回结果和返回结果的任务,以下是 ForkJoinTask 及其子类中一些重要方法的简要说明:

fork()

该方法用于在 ForkJoinPool 中异步地执行当前任务,如果当前任务已经在执行,则该方法不会有任何效果,调用 fork() 后,任务进入 ForkJoinPool 的工作队列中等待执行,fork() 是一个非阻塞方法,它会立即返回。

join()

该方法用于等待任务的完成,并获取其结果(如果任务有结果的话),如果任务已经完成,join() 会立即返回结果,如果任务尚未完成,join() 会阻塞调用线程,直到任务完成为止,对于 RecursiveActionjoin() 没有返回值;对于 RecursiveTaskjoin() 返回任务计算的结果。

invoke()

该方法用于在当前线程中执行任务,而不是在 ForkJoinPool 中异步执行,invoke() 会等待任务完成,并返回结果(如果任务有结果的话),通常,在不需要并行处理或任务很小不适合分解时使用 invoke()

invokeAll(ForkJoinTask… tasks)

这是ForkJoinTask 的静态方法,该方法用于执行给定的任务数组,并等待所有任务完成,它返回一个包含每个任务结果的数组(如果任务是 RecursiveTask 类型的话),如果任务是 RecursiveAction 类型,则结果数组中的每个元素都是 null,因为 RecursiveAction 不返回结果。

getPool()

返回执行此任务的 ForkJoinPool,如果任务尚未安排或已开始,则返回 null

getRawResult()

对于 RecursiveTask,返回任务的结果,但不等待任务完成。如果任务尚未完成,则可能返回不确定的结果,对于 RecursiveAction,此方法没有定义,因为它不返回结果。

setRawResult(V value)

对于 RecursiveTask,此方法用于设置任务的结果,这通常在任务计算完成后调用,对于 RecursiveAction,此方法没有定义。

isCompletedAbnormally()

如果任务因异常而完成,则返回 true

isCancelled()

如果任务被取消,则返回 true

cancel(boolean mayInterruptIfRunning)

尝试取消此任务的执行,如果任务已经开始执行,则参数 mayInterruptIfRunning 决定是否应该中断执行任务的线程。

ForkJoinTask 的设计主要是为了支持分治算法和并行计算,在实际使用中,通常通过扩展 RecursiveActionRecursiveTask 来实现自己的并行任务,而不是直接使用 ForkJoinTask 类,此外,使用 ForkJoinTask 时需要注意任务的粒度控制,以避免过度分解导致的性能下降。

核心总结

【揭秘】ForkJoinTask全面解析 - 程序员古德

ForkJoinTask是Java中处理并行计算的利器,其优点在于能够轻松地将大任务拆分成小任务,利用多核处理器并行处理,提高执行效率,它的缺点也很明显,比如任务划分和数据同步的复杂性可能导致额外的开销。ForkJoinTask适合处理计算密集型且可分解的任务,但要注意任务粒度的控制,避免划分过细;同时,合理处理线程安全和任务依赖关系,确保数据的正确性和一致性。

关注我,每天学习互联网编程技术 - 程序员古德

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/246598.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pytorch-metric-learning度量学习工具官方文档翻译

基于Pytorch实现的度量学习方法 开源代码&#xff1a;pytorch-metric-learning官网文档&#xff1a;PyTorch Metric Learning官方文档 度量学习相关的损失函数介绍&#xff1a; 度量学习DML之Contrastive Loss及其变种度量学习DML之Triplet Loss度量学习DML之Lifted Structu…

生信技能树--转录组--个人笔记

这周主要内容是学习转录组的比对&#xff0c;选择的软件为hisat2&#xff0c;该笔记仅供个人参考谨慎搬运代码。 # hisat2 可以快速准确地将测序得到的 RNA 片段&#xff08;reads&#xff09;比对到参考基因组&#xff0c;从而确定这些RNA 片段在基因组上的精确位置&#xff…

关于在Ubuntu20.04(ROS1 noetic)中使用catkin_make编译时发生的与pyhton版本不兼容的问题解决办法

今天在另外一台电脑上操作复现【ROS建模&#xff1a;一起从零手写URDF模型】这个博客时&#xff0c;发生了一些问题&#xff0c;特此记录下来 【ROS建模&#xff1a;一起从零手写URDF模型】链接&#xff1a;https://blog.csdn.net/qq_54900679/article/details/135726348?spm…

redis-主从复制

1.主从复制 1.1简介 主机数据更新后根据配置和策略&#xff0c; 自动同步到备机的master/slaver机制&#xff0c;Master以写为主&#xff0c;Slave以读为主 1.2作用 1、数据冗余&#xff1a;主从复制实现了数据的热备份&#xff0c;是持久化之外的一种数据冗余方式。 2、故…

C++初识类和对象

目录 1.面向过程和面向对象初步认识2.类的引入3.类的定义4.类的访问限定符及封装4.1访问限定符4.2封装 5.类的作用域6.类的实例化7.类的对象大小的计算7.1如何计算类对象的大小7.2类对象的存储方式猜测 7.3 结构体内存对齐规则8.类成员函数的this指针8.1 this指针的引出8.2this…

【C++入门到精通】特殊类的设计 |只能在堆 ( 栈 ) 上创建对象的类 |禁止拷贝和继承的类 [ C++入门 ]

阅读导航 引言一、特殊类 --- 不能被拷贝的类1. C98方式&#xff1a;2. C11方式&#xff1a; 二、特殊类 --- 只能在堆上创建对象的类三、特殊类 --- 只能在栈上创建对象的类四、特殊类 --- 不能被继承的类1. C98方式2. C11方法 总结温馨提示 引言 在面向对象编程中&#xff0…

Redis核心技术与实战【学习笔记】 - 3.Redis服务高可靠

1.数据同步&#xff1a;主从库如何实现数据一致&#xff1f; 前面我们学习了 AOF 和 RDB&#xff0c;如果 Redis 发生了宕机&#xff0c;它们可以分别通过回放日志和重新读入 RDB 文件的方式恢复数据&#xff0c;从而保证尽量较少丢失数据&#xff0c;提升可靠性。 不过&…

JVM内存模型介绍

JVM最常见的三种有&#xff1a; 1.Sun公司的 HotSpot&#xff0c;是目前使用最广泛的Java虚拟机。 2.BEA公司的 JRockit&#xff0c;后来被 Oracle收购。 3.IBM公司的 J9VM。 我们知道&#xff0c;Java的口号是&#xff1a; “Write once, run anywhere”&#xff0c;即一次编…

Adobe ColdFusion 任意文件读取漏洞复现(CVE-2023-26361)

0x01 产品简介 Adobe ColdFusion是美国奥多比(Adobe)公司的一套快速应用程序开发平台。该平台包括集成开发环境和脚本语言。 0x02 漏洞概述 Adobe ColdFusion平台 filemanager.cfc接口存在任意文件读取漏洞,攻击者可通过该漏洞读取系统重要文件(如数据库配置文件、系统配…

uniapp canvas做的刮刮乐解决蒙层能自定义图片

最近给湖南中烟做元春活动&#xff0c;一个月要开发4个小活动&#xff0c;这个是其中一个难度一般&#xff0c;最难的是一个类似鲤鱼跃龙门的小游戏&#xff0c;哎&#xff0c;真实为难我这个“拍黄片”的。下面是主要代码。 <canvas :style"{width:widthpx,height:hei…

数据结构——顺序表和链表的比较

1.逻辑结构 顺序表和链表都属于线性表&#xff0c;都是线性结构 2.存储结构 顺序表&#xff1a;顺序存储 优点&#xff1a;支持随机存取&#xff0c;存储密度高 缺点&#xff1a;大片连续空间分配不方便&#xff0c;改变容量不方便 链表&#xff1a;链式存储 优点&#…

如何实现无公网IP实现远程访问MongoDB文件数据库

&#x1f4d1;前言 本文主要是如何实现无公网IP实现远程访问MongoDB文件数据库的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是青衿&#x1f947; ☁️博客首页&#xff1a;CSDN主页放风讲故事 &#x…

MyBatis详解(2)-- mybatis配置文件

MyBatis详解&#xff08;2&#xff09; mybatis配置文件 mybatis配置文件 1.构建SqlSessionFactory的依据。 2.MyBatis最为核心的内容&#xff0c;对MyBatis的使用影响很大。 3.配置文件的层次顺序不能颠倒&#xff0c;一旦颠倒会出现异常。 < c o n f i g u r a t i o n…

大数据就业方向-(工作)ETL开发

上一篇文章&#xff1a; 大数据 - 大数据入门第一篇 | 关于大数据你了解多少&#xff1f;-CSDN博客 目录 &#x1f436;1.ETL概念 &#x1f436;2. ETL的用处 &#x1f436;3.ETL实现方式 &#x1f436;4. ETL体系结构 &#x1f436;5. 什么是ETL技术&#xff1f; &…

【JavaWeb】监听器 Listener

文章目录 一、监听器是什么二、监听器的分类三、监听器的六个主要接口3.1 application域监听器测试代码 :3.1.1 定义监听器3.1.2 定义触发监听器的代码 3.2 session域监听器测试代码 :3.2.1 定义监听器3.2.2 定义触发监听器的代码 3.3 request域监听器测试代码&#xff1a;3.3.…

套接字的多种可选项(修改IO缓冲区大小及TCP_NODELAY)

标题套接字的多种可选项 我们进行套接字编程时往往只关注数据通信&#xff0c;而忽略了套接字具有的不同特性。但是&#xff0c;理解这些特性并根据实际需要进行更改也十分重要。 从上表可以看出&#xff0c;套接字可选项是分层的。IPPROTOIP层可选项是IP协议相关事项&#x…

OpenAI 降低价格并修复拒绝工作的“懒惰”GPT-4,另外ChatGPT 新增了两个小功能

OpenAI降低了GPT-3.5 Turbo模型的API访问价格&#xff0c;输入和输出价格分别降低了50%和25%。这对于使用API进行文本密集型应用程序的用户来说是一个好消息。 OpenAI官网&#xff1a;OpenAI AIGC专区&#xff1a;aigc 教程专区&#xff1a;AI绘画&#xff0c;AI视频&#x…

虹科分享丨AR与AI融合加速,医疗护理更便捷!

来源&#xff1a;虹科数字化与AR 虹科分享丨AR与AI融合加速&#xff0c;医疗护理更便捷&#xff01; 原文链接&#xff1a;https://mp.weixin.qq.com/s/Fi0wNfk_TDXRo_1-6cSRNQ 欢迎关注虹科&#xff0c;为您提供最新资讯&#xff01; #AR眼镜 #医疗护理 根据Reports and Da…

HarmonyOS 鸿蒙组件启动规则(Stage模型)

组件启动规则&#xff08;Stage模型&#xff09; 启动组件是指一切启动或连接应用组件的行为&#xff1a; 启动UIAbility、ServiceExtensionAbility、DataShareExtensionAbility&#xff0c;如使用startAbility()、startServiceExtensionAbility()、startAbilityByCall()等相关…

美赛注意事项

2024年1月27日 &#xff1a; 赖维杰 同学分享 1、最后的展现必须要漂亮&#xff08;绘图、呈现&#xff09; 李维情 西北建模王 论文位&#xff08;核心&#xff09;必须清楚建模位、编程位知道做了些什么 常见模型&#xff1a; 1、看真题&#xff0c;读往年论文&#xff0c;选…