2024年美赛数学建模思路 - 案例:退火算法

文章目录

    • 1 退火算法原理
      • 1.1 物理背景
        • 1.2 背后的数学模型
    • 2 退火算法实现
      • 2.1 算法流程
      • 2.2算法实现
  • 建模资料

## 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 退火算法原理

1.1 物理背景

在热力学上,退火(annealing)现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。大自然在缓慢降温(亦即,退火)时,可“找到”最低能量状态:结晶。但是,如果过程过急过快,快速降温(亦称「淬炼」,quenching)时,会导致不是最低能态的非晶形。

如下图所示,首先(左图)物体处于非晶体状态。我们将固体加温至充分高(中图),再让其徐徐冷却,也就退火(右图)。加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小(此时物体以晶体形态呈现)。

在这里插入图片描述

1.2 背后的数学模型

如果你对退火的物理意义还是晕晕的,没关系我们还有更为简单的理解方式。想象一下如果我们现在有下面这样一个函数,现在想求函数的(全局)最优解。如果采用Greedy策略,那么从A点开始试探,如果函数值继续减少,那么试探过程就会继续。而当到达点B时,显然我们的探求过程就结束了(因为无论朝哪个方向努力,结果只会越来越大)。最终我们只能找打一个局部最后解B。

在这里插入图片描述

根据Metropolis准则,粒子在温度T时趋于平衡的概率为exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变数,k为Boltzmann常数。Metropolis准则常表示为
在这里插入图片描述

Metropolis准则表明,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE) = exp( dE/(kT) )。其中k是一个常数,exp表示自然指数,且dE<0。所以P和T正相关。这条公式就表示:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(因为退火的过程是温度逐渐下降的过程),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。随着温度T的降低,P(dE)会逐渐降低。

我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。也就是说,在用固体退火模拟组合优化问题,将内能E模拟为目标函数值 f,温度T演化成控制参数 t,即得到解组合优化问题的模拟退火演算法:由初始解 i 和控制参数初值 t 开始,对当前解重复“产生新解→计算目标函数差→接受或丢弃”的迭代,并逐步衰减 t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值 t 及其衰减因子Δt 、每个 t 值时的迭代次数L和停止条件S。

2 退火算法实现

2.1 算法流程

(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L
(2) 对k=1,……,L做第(3)至第6步:
(3) 产生新解S′
(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2
在这里插入图片描述

2.2算法实现

import numpy as np
import matplotlib.pyplot as plt
import randomclass SA(object):def __init__(self, interval, tab='min', T_max=10000, T_min=1, iterMax=1000, rate=0.95):self.interval = interval                                    # 给定状态空间 - 即待求解空间self.T_max = T_max                                          # 初始退火温度 - 温度上限self.T_min = T_min                                          # 截止退火温度 - 温度下限self.iterMax = iterMax                                      # 定温内部迭代次数self.rate = rate                                            # 退火降温速度#############################################################self.x_seed = random.uniform(interval[0], interval[1])      # 解空间内的种子self.tab = tab.strip()                                      # 求解最大值还是最小值的标签: 'min' - 最小值;'max' - 最大值#############################################################self.solve()                                                # 完成主体的求解过程self.display()                                              # 数据可视化展示def solve(self):temp = 'deal_' + self.tab                                   # 采用反射方法提取对应的函数if hasattr(self, temp):deal = getattr(self, temp)else:exit('>>>tab标签传参有误:"min"|"max"<<<')x1 = self.x_seedT = self.T_maxwhile T >= self.T_min:for i in range(self.iterMax):f1 = self.func(x1)delta_x = random.random() * 2 - 1if x1 + delta_x >= self.interval[0] and x1 + delta_x <= self.interval[1]:   # 将随机解束缚在给定状态空间内x2 = x1 + delta_xelse:x2 = x1 - delta_xf2 = self.func(x2)delta_f = f2 - f1x1 = deal(x1, x2, delta_f, T)T *= self.rateself.x_solu = x1                                            # 提取最终退火解def func(self, x):                                              # 状态产生函数 - 即待求解函数value = np.sin(x**2) * (x**2 - 5*x)return valuedef p_min(self, delta, T):                                      # 计算最小值时,容忍解的状态迁移概率probability = np.exp(-delta/T)return probabilitydef p_max(self, delta, T):probability = np.exp(delta/T)                               # 计算最大值时,容忍解的状态迁移概率return probabilitydef deal_min(self, x1, x2, delta, T):if delta < 0:                                               # 更优解return x2else:                                                       # 容忍解P = self.p_min(delta, T)if P > random.random(): return x2else: return x1def deal_max(self, x1, x2, delta, T):if delta > 0:                                               # 更优解return x2else:                                                       # 容忍解P = self.p_max(delta, T)if P > random.random(): return x2else: return x1def display(self):print('seed: {}\nsolution: {}'.format(self.x_seed, self.x_solu))plt.figure(figsize=(6, 4))x = np.linspace(self.interval[0], self.interval[1], 300)y = self.func(x)plt.plot(x, y, 'g-', label='function')plt.plot(self.x_seed, self.func(self.x_seed), 'bo', label='seed')plt.plot(self.x_solu, self.func(self.x_solu), 'r*', label='solution')plt.title('solution = {}'.format(self.x_solu))plt.xlabel('x')plt.ylabel('y')plt.legend()plt.savefig('SA.png', dpi=500)plt.show()plt.close()if __name__ == '__main__':SA([-5, 5], 'max')

实现结果

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/246864.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习之pandas库学习

这里写目录标题 pandas介绍pandas核心数据结构SeriesDataFrameDataFrame的创建列访问列添加列删除行访问行添加行删除数据修改 pandas介绍 pandas是基于NumPy 的一种工具&#xff0c;该工具是为了解决数据分析任务而创建的。Pandas 纳入 了大量库和一些标准的数据模型&#xff…

通过Android Logcat分析firebase崩溃

参考&#xff1a;UnityIL2CPP包Crash闪退利用Android Logcat还原符号表堆栈日志 - 简书 一、安装Android Logcat插件 1、新建空白unity工程&#xff0c;打开PackageManager窗口&#xff0c;菜单栏Window/PackageManager 2、PackageManager中安装Android Logcat日志工具 3、安…

橘子学Mybatis08之Mybatis关于一级缓存的使用和适配器设计模式

前面我们说了mybatis的缓存设计体系&#xff0c;这里我们来正式看一下这玩意到底是咋个用法。 首先我们是知道的&#xff0c;Mybatis中存在两级缓存。分别是一级缓存(会话级)&#xff0c;和二级缓存(全局级)。 下面我们就来看看这两级缓存。 一、准备工作 1、准备数据库 在此之…

【docker】linux系统docker的安装及使用

一、docker应用的安装 1.1 安装方式 Docker的自动化安装&#xff0c;即使用提供的一键安装的脚本&#xff0c;进行安装。 官方的一键安装方式&#xff1a;curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 国内 daocloud一键安装命令&#xff1a;curl -s…

【Web】小白也能做的RWCTF体验赛baby题部分wp

遇到不会的题&#xff0c;怎么办&#xff01;有的师傅告诉你完了&#xff0c;废了&#xff0c;寄了&#xff01;只有Z3告诉你&#xff0c;稳辣&#xff01;稳辣&#xff01;都稳辣&#xff01; 这种CVE复现的题型&#xff0c;不可能要求选手从0到1进行0day挖掘&#xff0c;其实…

Django介绍

一、介绍 Django是Python语言中的一个Web框架&#xff0c;Python语言中主流的web框架有Django、Tornado、Flask 等多种 优势&#xff1a;大而全&#xff0c;框架本身集成了ORM、模型绑定、模板引擎、缓存、Session等功能&#xff0c;是一个全能型框架&#xff0c;拥有自己的A…

C#,获取与设置Windows背景图片的源代码

为了满足孩子们个性化桌面的需求。 这里发布获取与设置Windows背景图片的源代码。 1 文本格式 using System; using System.IO; using System.Data; using System.Linq; using System.Text; using System.Drawing; using System.Collections; using System.Collections.Gene…

【MATLAB第94期】#源码分享 | 基于MATLAB的广义加性模型多输入单输出回归预测模型(至少2021a版本)

【MATLAB第94期】#源码分享 | 基于MATLAB的广义加性模型多输入单输出回归预测模型&#xff08;至少2021a版本&#xff09; 参考链接&#xff1a; 一、代码展示 %% 清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear …

Linux系统——函数与数组

目录 一、函数 1.函数的定义 2.使用函数 3.定义函数的方法 4.函数举例 4.1判断操作系统 4.2判断ip地址 5.查看函数列表 6.删除函数 7.函数返回值——Return 8.函数的作用范围 9.函数传参 10.函数递归 10.1病毒 10.2阶乘 10.2.1 用for循环 10.2.2函数阶乘 10.…

Unity中的协程

这里写目录标题 前言一、 什么是协程&#xff1f;二、如何声明一个协程三、协程的作用四、协程的优缺点优点 缺点五、 应用示例延迟执行渐变效果 六、总结 前言 在学习unity的过程中会遇到“协程”的概念&#xff0c;听到协程我们脑海里应该会想到它 当然不是一个东西&#xf…

基于物联网设计的水稻田智能灌溉系统(STM32+华为云IOT)

一、项目介绍 随着科技的不断发展和人们生活水平的提高&#xff0c;农业生产也逐渐向智能化、高效化的方向发展。水稻作为我国主要的粮食作物之一&#xff0c;其生长过程中的灌溉管理尤为重要。传统的灌溉方式往往依赖于人工观察和控制&#xff0c;不仅效率低下&#xff0c;而…

硬件知识(1) 手机的长焦镜头

#灵感# 手机总是配备好几个镜头&#xff0c;研究一下 目录 手机常配备的摄像头&#xff0c;及效果举例 长焦的焦距 焦距的定义和示图&#xff1a; IPC的焦距和适用场景&#xff1a; 手机常配备的摄像头&#xff0c;及效果举例 以下是小米某个手机的摄像头介绍&#xff1a…

.NET绿色开源一键自动化下载、安装、激活Office的利器

前言 今天分享一款.NET开源、绿色、安全、无毒的支持一键自动化下载、安装、激活Microsoft Office的利器&#xff1a;LKY_OfficeTools。 工具介绍 一键自动化下载、安装、激活 Microsoft Office 的利器。绿色、开源、安全、无毒。 目前包含的功能&#xff1a; 一键快速下载、…

12.Elasticsearch应用(十二)

Elasticsearch应用&#xff08;十二&#xff09; 1.单机ES面临的问题 海量数据存储问题单点故障问题 2.ES集群如何解决上面的问题 海量数据存储解决问题&#xff1a; 将索引库从逻辑上拆分为N个分片&#xff08;Shard&#xff09;&#xff0c;存储到多个节点单点故障问题&a…

FPGA HDMI IP之DDC(本质I2C协议)通道学习

目的&#xff1a; 使用KingstVIS逻辑分析仪软件分析HDMI的DDC通道传输的SCDC数据&#xff08;遵循I2C协议&#xff09;&#xff0c;同时学习了解SCDC的寄存器与I2C通信协议。 部分英文缩写&#xff1a; HDMIHigh Definition Multi-media Interface高清多媒体接口DDCDisplay Dat…

一、MongoDB、express的安装和基本使用

数据库【Sqlite3、MongoDB、Mysql】简介&小记 Sqlite3&#xff1a; SQLite3是一个轻量级的数据库系统&#xff0c;它被设计成嵌入式数据库。这意味着它是一个包含在应用程序中的数据库&#xff0c;而不是独立运行的系统服务。适用场景&#xff1a;如小型工具、游戏、本地…

数据结构OJ题——二叉树前序、中序遍历非递归实现(Java版)

二叉树前序、中序遍历非递归实现 前序非递归遍历实现中序非递归遍历实现 前序非递归遍历实现 题目&#xff1a; 二叉树前序遍历非递归实现 总体思路&#xff1a;用非递归的方式模拟递归遍历。 以下图为例&#xff1a; 图示详解&#xff1a; 代码实现&#xff1a; /*** Defi…

打开 IOS开发者模式

前言 需要 1、辅助设备&#xff1a;苹果电脑&#xff1b; 2、辅助应用&#xff1a;Xcode&#xff1b; 3、准备工作&#xff1a;苹果手机 使用数据线连接 苹果电脑&#xff1b; 当前系统版本 IOS 17.3 通过Xcode激活 两指同时点击 Xcode 显示选择&#xff0c;Open Develop…

【数据结构与算法】6.栈

&#x1f4da;博客主页&#xff1a;爱敲代码的小杨. ✨专栏&#xff1a;《Java SE语法》 ❤️感谢大家点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;&#xff0c;您的三连就是我持续更新的动力❤️ &#x1f64f;小杨水平有限&#xff0c;欢迎各位大佬指点&…

Android App开发基础(1)—— App的开发特点

本文介绍基于Android系统的App开发常识&#xff0c;包括以下几个方面&#xff1a;App开发与其他软件开发有什么不一样&#xff0c;App工程是怎样的组织结构又是怎样配置的&#xff0c;App开发的前后端分离设计是如何运作实现的&#xff0c;App的活动页面是如何创建又是如何跳转…